MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expaddz Structured version   Visualization version   GIF version

Theorem expaddz 13755
Description: Sum of exponents law for integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expaddz (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddz
StepHypRef Expression
1 elznn0nn 12263 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 elznn0nn 12263 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)))
3 expadd 13753 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
433expia 1119 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
54adantlr 711 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6 expaddzlem 13754 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
763expia 1119 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
85, 7jaodan 954 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
9 expaddzlem 13754 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑁 + 𝑀)) = ((𝐴𝑁) · (𝐴𝑀)))
10 simp3 1136 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
1110nn0cnd 12225 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
12 simp2l 1197 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ)
1312recnd 10934 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
1411, 13addcomd 11107 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
1514oveq2d 7271 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (𝐴↑(𝑁 + 𝑀)))
16 simp1l 1195 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝐴 ∈ ℂ)
17 expcl 13728 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
1816, 10, 17syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
19 simp1r 1196 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝐴 ≠ 0)
2013negnegd 11253 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → --𝑁 = 𝑁)
21 simp2r 1198 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → -𝑁 ∈ ℕ)
2221nnnn0d 12223 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → -𝑁 ∈ ℕ0)
23 nn0negz 12288 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ0 → --𝑁 ∈ ℤ)
2422, 23syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → --𝑁 ∈ ℤ)
2520, 24eqeltrrd 2840 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
26 expclz 13735 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
2716, 19, 25, 26syl3anc 1369 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
2818, 27mulcomd 10927 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴𝑁)) = ((𝐴𝑁) · (𝐴𝑀)))
299, 15, 283eqtr4d 2788 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
30293expia 1119 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
3130impancom 451 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
32 simp2l 1197 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℝ)
3332recnd 10934 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℂ)
34 simp3l 1199 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3534recnd 10934 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
3633, 35negdid 11275 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
3736oveq2d 7271 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 + 𝑁)) = (𝐴↑(-𝑀 + -𝑁)))
38 simp1l 1195 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
39 simp2r 1198 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ)
4039nnnn0d 12223 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ0)
41 simp3r 1200 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
4241nnnn0d 12223 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
43 expadd 13753 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 + -𝑁)) = ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4438, 40, 42, 43syl3anc 1369 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 + -𝑁)) = ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4537, 44eqtrd 2778 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 + 𝑁)) = ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4645oveq2d 7271 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 + 𝑁))) = (1 / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
47 1t1e1 12065 . . . . . . . . . . 11 (1 · 1) = 1
4847oveq1i 7265 . . . . . . . . . 10 ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))) = (1 / ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4946, 48eqtr4di 2797 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
50 expcl 13728 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
5138, 40, 50syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ∈ ℂ)
52 simp1r 1196 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ≠ 0)
5340nn0zd 12353 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℤ)
54 expne0i 13743 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) ≠ 0)
5538, 52, 53, 54syl3anc 1369 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ≠ 0)
56 expcl 13728 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
5738, 42, 56syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
5842nn0zd 12353 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
59 expne0i 13743 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0)
6038, 52, 58, 59syl3anc 1369 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ≠ 0)
61 ax-1cn 10860 . . . . . . . . . . 11 1 ∈ ℂ
62 divmuldiv 11605 . . . . . . . . . . 11 (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) ≠ 0) ∧ ((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0))) → ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
6361, 61, 62mpanl12 698 . . . . . . . . . 10 ((((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) ≠ 0) ∧ ((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0)) → ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
6451, 55, 57, 60, 63syl22anc 835 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
6549, 64eqtr4d 2781 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))))
6633, 35addcld 10925 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℂ)
6740, 42nn0addcld 12227 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑀 + -𝑁) ∈ ℕ0)
6836, 67eqeltrd 2839 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 + 𝑁) ∈ ℕ0)
69 expneg2 13719 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
7038, 66, 68, 69syl3anc 1369 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
71 expneg2 13719 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
7238, 33, 40, 71syl3anc 1369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
73 expneg2 13719 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
7438, 35, 42, 73syl3anc 1369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
7572, 74oveq12d 7273 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑀) · (𝐴𝑁)) = ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))))
7665, 70, 753eqtr4d 2788 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
77763expia 1119 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
7831, 77jaodan 954 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
798, 78jaod 855 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
802, 79sylan2b 593 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
811, 80syl5bi 241 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
8281impr 454 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  m1expeven  13758  expsub  13759  expp1z  13760  iseraltlem2  15322  iseraltlem3  15323  pcaddlem  16517  m1expaddsub  19021  expghm  20609  aaliou3lem2  25408  aaliou3lem6  25413  dchrptlem1  26317  dchrptlem2  26318  lgseisenlem4  26431  lgsquadlem1  26433  lgsquad2lem1  26437  padicabv  26683  knoppndvlem2  34620  knoppndvlem14  34632  pellfund14  40636  rmxyadd  40659
  Copyright terms: Public domain W3C validator