MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom Structured version   Visualization version   GIF version

Theorem binom 15849
Description: The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 15848. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7421 . . . . . 6 (𝑥 = 0 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑0))
2 oveq2 7421 . . . . . . 7 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 7420 . . . . . . . . 9 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 7420 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq2d 7429 . . . . . . . . . 10 (𝑥 = 0 → (𝐴↑(𝑥𝑘)) = (𝐴↑(0 − 𝑘)))
65oveq1d 7428 . . . . . . . . 9 (𝑥 = 0 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))
73, 6oveq12d 7431 . . . . . . . 8 (𝑥 = 0 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
87adantr 480 . . . . . . 7 ((𝑥 = 0 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
92, 8sumeq12dv 15725 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
101, 9eqeq12d 2750 . . . . 5 (𝑥 = 0 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))))
1110imbi2d 340 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))))
12 oveq2 7421 . . . . . 6 (𝑥 = 𝑛 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑛))
13 oveq2 7421 . . . . . . 7 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 7420 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 7420 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq2d 7429 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑛𝑘)))
1716oveq1d 7428 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))
1814, 17oveq12d 7431 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
1918adantr 480 . . . . . . 7 ((𝑥 = 𝑛𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2013, 19sumeq12dv 15725 . . . . . 6 (𝑥 = 𝑛 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2112, 20eqeq12d 2750 . . . . 5 (𝑥 = 𝑛 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))))
2221imbi2d 340 . . . 4 (𝑥 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))))
23 oveq2 7421 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑(𝑛 + 1)))
24 oveq2 7421 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 7420 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 7420 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq2d 7429 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝐴↑(𝑥𝑘)) = (𝐴↑((𝑛 + 1) − 𝑘)))
2827oveq1d 7428 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))
2925, 28oveq12d 7431 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3029adantr 480 . . . . . . 7 ((𝑥 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3124, 30sumeq12dv 15725 . . . . . 6 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3223, 31eqeq12d 2750 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))))
3332imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
34 oveq2 7421 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑁))
35 oveq2 7421 . . . . . . 7 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 7420 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 7420 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq2d 7429 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑁𝑘)))
3938oveq1d 7428 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))
4036, 39oveq12d 7431 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4140adantr 480 . . . . . . 7 ((𝑥 = 𝑁𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4235, 41sumeq12dv 15725 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4334, 42eqeq12d 2750 . . . . 5 (𝑥 = 𝑁 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
4443imbi2d 340 . . . 4 (𝑥 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))))
45 exp0 14088 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
46 exp0 14088 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
4745, 46oveqan12d 7432 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
48 1t1e1 12410 . . . . . . . 8 (1 · 1) = 1
4947, 48eqtrdi 2785 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
5049oveq2d 7429 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = (1 · 1))
5150, 48eqtrdi 2785 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = 1)
52 0z 12607 . . . . . 6 0 ∈ ℤ
53 ax-1cn 11195 . . . . . . 7 1 ∈ ℂ
5451, 53eqeltrdi 2841 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ)
55 oveq2 7421 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
56 0nn0 12524 . . . . . . . . . 10 0 ∈ ℕ0
57 bcn0 14332 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
5856, 57ax-mp 5 . . . . . . . . 9 (0C0) = 1
5955, 58eqtrdi 2785 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
60 oveq2 7421 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
61 0m0e0 12368 . . . . . . . . . . 11 (0 − 0) = 0
6260, 61eqtrdi 2785 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6362oveq2d 7429 . . . . . . . . 9 (𝑘 = 0 → (𝐴↑(0 − 𝑘)) = (𝐴↑0))
64 oveq2 7421 . . . . . . . . 9 (𝑘 = 0 → (𝐵𝑘) = (𝐵↑0))
6563, 64oveq12d 7431 . . . . . . . 8 (𝑘 = 0 → ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)) = ((𝐴↑0) · (𝐵↑0)))
6659, 65oveq12d 7431 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6766fsum1 15766 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6852, 54, 67sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
69 addcl 11219 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
7069exp0d 14163 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = 1)
7151, 68, 703eqtr4rd 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
72 simprl 770 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
73 simprr 772 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
74 simpl 482 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
75 id 22 . . . . . . 7 (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
7672, 73, 74, 75binomlem 15848 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
7776exp31 419 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7877a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7911, 22, 33, 44, 71, 78nn0ind 12696 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
8079impcom 407 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
81803impa 1109 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7413  cc 11135  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  0cn0 12509  cz 12596  ...cfz 13529  cexp 14084  Ccbc 14324  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-fac 14296  df-bc 14325  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706
This theorem is referenced by:  binom1p  15850  efaddlem  16112  basellem3  27063  lcmineqlem1  42005  jm2.22  42985  binomcxplemnn0  44340  altgsumbc  48241
  Copyright terms: Public domain W3C validator