MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwp1fsum Structured version   Visualization version   GIF version

Theorem pwp1fsum 16425
Description: The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.)
Hypotheses
Ref Expression
pwp1fsum.a (𝜑𝐴 ∈ ℂ)
pwp1fsum.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pwp1fsum (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwp1fsum
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 pwp1fsum.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 1cnd 11254 . . . 4 (𝜑 → 1 ∈ ℂ)
3 fzfid 14011 . . . . 5 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
4 neg1cn 12378 . . . . . . . 8 -1 ∈ ℂ
54a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → -1 ∈ ℂ)
6 elfznn0 13657 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
85, 7expcld 14183 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (-1↑𝑘) ∈ ℂ)
91adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
109, 7expcld 14183 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
118, 10mulcld 11279 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
123, 11fsumcl 15766 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
131, 2, 12adddird 11284 . . 3 (𝜑 → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + (1 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))))
143, 1, 11fsummulc2 15817 . . . . 5 (𝜑 → (𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴 · ((-1↑𝑘) · (𝐴𝑘))))
159, 11mulcomd 11280 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 · ((-1↑𝑘) · (𝐴𝑘))) = (((-1↑𝑘) · (𝐴𝑘)) · 𝐴))
168, 10, 9mulassd 11282 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (((-1↑𝑘) · (𝐴𝑘)) · 𝐴) = ((-1↑𝑘) · ((𝐴𝑘) · 𝐴)))
17 expp1 14106 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
181, 6, 17syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
1918eqcomd 2741 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
2019oveq2d 7447 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((-1↑𝑘) · ((𝐴𝑘) · 𝐴)) = ((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2115, 16, 203eqtrd 2779 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 · ((-1↑𝑘) · (𝐴𝑘))) = ((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2221sumeq2dv 15735 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴 · ((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2314, 22eqtrd 2775 . . . 4 (𝜑 → (𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2412mullidd 11277 . . . 4 (𝜑 → (1 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))
2523, 24oveq12d 7449 . . 3 (𝜑 → ((𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + (1 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) + Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
26 1zzd 12646 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
27 0zd 12623 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
28 pwp1fsum.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
29 nnz 12632 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
30 peano2zm 12658 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3129, 30syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
3228, 31syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
33 peano2nn0 12564 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
346, 33syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → (𝑘 + 1) ∈ ℕ0)
3534adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈ ℕ0)
369, 35expcld 14183 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
378, 36mulcld 11279 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((-1↑𝑘) · (𝐴↑(𝑘 + 1))) ∈ ℂ)
38 oveq2 7439 . . . . . . . 8 (𝑘 = (𝑙 − 1) → (-1↑𝑘) = (-1↑(𝑙 − 1)))
39 oveq1 7438 . . . . . . . . 9 (𝑘 = (𝑙 − 1) → (𝑘 + 1) = ((𝑙 − 1) + 1))
4039oveq2d 7447 . . . . . . . 8 (𝑘 = (𝑙 − 1) → (𝐴↑(𝑘 + 1)) = (𝐴↑((𝑙 − 1) + 1)))
4138, 40oveq12d 7449 . . . . . . 7 (𝑘 = (𝑙 − 1) → ((-1↑𝑘) · (𝐴↑(𝑘 + 1))) = ((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))))
4226, 27, 32, 37, 41fsumshft 15813 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) = Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))))
43 elfzelz 13561 . . . . . . . . . . . 12 (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) → 𝑙 ∈ ℤ)
4443zcnd 12721 . . . . . . . . . . 11 (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) → 𝑙 ∈ ℂ)
4544adantl 481 . . . . . . . . . 10 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → 𝑙 ∈ ℂ)
46 npcan1 11686 . . . . . . . . . 10 (𝑙 ∈ ℂ → ((𝑙 − 1) + 1) = 𝑙)
4745, 46syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → ((𝑙 − 1) + 1) = 𝑙)
4847oveq2d 7447 . . . . . . . 8 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → (𝐴↑((𝑙 − 1) + 1)) = (𝐴𝑙))
4948oveq2d 7447 . . . . . . 7 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → ((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))) = ((-1↑(𝑙 − 1)) · (𝐴𝑙)))
5049sumeq2dv 15735 . . . . . 6 (𝜑 → Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))) = Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)))
5128nncnd 12280 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
52 npcan1 11686 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54 0p1e1 12386 . . . . . . . . . . . 12 (0 + 1) = 1
5554fveq2i 6910 . . . . . . . . . . 11 (ℤ‘(0 + 1)) = (ℤ‘1)
56 nnuz 12919 . . . . . . . . . . 11 ℕ = (ℤ‘1)
5755, 56eqtr4i 2766 . . . . . . . . . 10 (ℤ‘(0 + 1)) = ℕ
5857a1i 11 . . . . . . . . 9 (𝜑 → (ℤ‘(0 + 1)) = ℕ)
5928, 53, 583eltr4d 2854 . . . . . . . 8 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(0 + 1)))
6054oveq1i 7441 . . . . . . . . . . 11 ((0 + 1)...((𝑁 − 1) + 1)) = (1...((𝑁 − 1) + 1))
6160eleq2i 2831 . . . . . . . . . 10 (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) ↔ 𝑙 ∈ (1...((𝑁 − 1) + 1)))
624a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → -1 ∈ ℂ)
63 nnm1nn0 12565 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ → (𝑙 − 1) ∈ ℕ0)
6463adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → (𝑙 − 1) ∈ ℕ0)
6562, 64expcld 14183 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ℕ) → (-1↑(𝑙 − 1)) ∈ ℂ)
661adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → 𝐴 ∈ ℂ)
67 nnnn0 12531 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ → 𝑙 ∈ ℕ0)
6867adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → 𝑙 ∈ ℕ0)
6966, 68expcld 14183 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℂ)
7065, 69mulcld 11279 . . . . . . . . . . . 12 ((𝜑𝑙 ∈ ℕ) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ)
7170expcom 413 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (𝜑 → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ))
72 elfznn 13590 . . . . . . . . . . 11 (𝑙 ∈ (1...((𝑁 − 1) + 1)) → 𝑙 ∈ ℕ)
7371, 72syl11 33 . . . . . . . . . 10 (𝜑 → (𝑙 ∈ (1...((𝑁 − 1) + 1)) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ))
7461, 73biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ))
7574imp 406 . . . . . . . 8 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ)
76 oveq1 7438 . . . . . . . . . 10 (𝑙 = ((𝑁 − 1) + 1) → (𝑙 − 1) = (((𝑁 − 1) + 1) − 1))
7776oveq2d 7447 . . . . . . . . 9 (𝑙 = ((𝑁 − 1) + 1) → (-1↑(𝑙 − 1)) = (-1↑(((𝑁 − 1) + 1) − 1)))
78 oveq2 7439 . . . . . . . . 9 (𝑙 = ((𝑁 − 1) + 1) → (𝐴𝑙) = (𝐴↑((𝑁 − 1) + 1)))
7977, 78oveq12d 7449 . . . . . . . 8 (𝑙 = ((𝑁 − 1) + 1) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) = ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1))))
8059, 75, 79fsumm1 15784 . . . . . . 7 (𝜑 → Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = (Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) + ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1)))))
8132zcnd 12721 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℂ)
82 pncan1 11685 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℂ → (((𝑁 − 1) + 1) − 1) = (𝑁 − 1))
8381, 82syl 17 . . . . . . . . . . 11 (𝜑 → (((𝑁 − 1) + 1) − 1) = (𝑁 − 1))
8483oveq2d 7447 . . . . . . . . . 10 (𝜑 → ((0 + 1)...(((𝑁 − 1) + 1) − 1)) = ((0 + 1)...(𝑁 − 1)))
8584sumeq1d 15733 . . . . . . . . 9 (𝜑 → Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = Σ𝑙 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)))
86 oveq1 7438 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 − 1) = (𝑘 − 1))
8786oveq2d 7447 . . . . . . . . . . 11 (𝑙 = 𝑘 → (-1↑(𝑙 − 1)) = (-1↑(𝑘 − 1)))
88 oveq2 7439 . . . . . . . . . . 11 (𝑙 = 𝑘 → (𝐴𝑙) = (𝐴𝑘))
8987, 88oveq12d 7449 . . . . . . . . . 10 (𝑙 = 𝑘 → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) = ((-1↑(𝑘 − 1)) · (𝐴𝑘)))
9089cbvsumv 15729 . . . . . . . . 9 Σ𝑙 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))
9185, 90eqtrdi 2791 . . . . . . . 8 (𝜑 → Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)))
9283oveq2d 7447 . . . . . . . . 9 (𝜑 → (-1↑(((𝑁 − 1) + 1) − 1)) = (-1↑(𝑁 − 1)))
9353oveq2d 7447 . . . . . . . . 9 (𝜑 → (𝐴↑((𝑁 − 1) + 1)) = (𝐴𝑁))
9492, 93oveq12d 7449 . . . . . . . 8 (𝜑 → ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1))) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
9591, 94oveq12d 7449 . . . . . . 7 (𝜑 → (Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) + ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1)))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))))
9680, 95eqtrd 2775 . . . . . 6 (𝜑 → Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))))
9742, 50, 963eqtrd 2779 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))))
98 nnm1nn0 12565 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
99 elnn0uz 12921 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
10098, 99sylib 218 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
10128, 100syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
102 oveq2 7439 . . . . . . . . 9 (𝑘 = 0 → (-1↑𝑘) = (-1↑0))
103 exp0 14103 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
1044, 103ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
105102, 104eqtrdi 2791 . . . . . . . 8 (𝑘 = 0 → (-1↑𝑘) = 1)
106 oveq2 7439 . . . . . . . 8 (𝑘 = 0 → (𝐴𝑘) = (𝐴↑0))
107105, 106oveq12d 7449 . . . . . . 7 (𝑘 = 0 → ((-1↑𝑘) · (𝐴𝑘)) = (1 · (𝐴↑0)))
108101, 11, 107fsum1p 15786 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) = ((1 · (𝐴↑0)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
1091exp0d 14177 . . . . . . . . 9 (𝜑 → (𝐴↑0) = 1)
110109oveq2d 7447 . . . . . . . 8 (𝜑 → (1 · (𝐴↑0)) = (1 · 1))
111 1t1e1 12426 . . . . . . . 8 (1 · 1) = 1
112110, 111eqtrdi 2791 . . . . . . 7 (𝜑 → (1 · (𝐴↑0)) = 1)
113112oveq1d 7446 . . . . . 6 (𝜑 → ((1 · (𝐴↑0)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (1 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
114 fzfid 14011 . . . . . . . 8 (𝜑 → ((0 + 1)...(𝑁 − 1)) ∈ Fin)
115 elfznn 13590 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ)
1164a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → -1 ∈ ℂ)
117 nnnn0 12531 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
118117adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
119116, 118expcld 14183 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (-1↑𝑘) ∈ ℂ)
1201adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
121120, 118expcld 14183 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
122119, 121mulcld 11279 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
123122expcom 413 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝜑 → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ))
124115, 123syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑁 − 1)) → (𝜑 → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ))
12554oveq1i 7441 . . . . . . . . . 10 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
126124, 125eleq2s 2857 . . . . . . . . 9 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (𝜑 → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ))
127126impcom 407 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
128114, 127fsumcl 15766 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
1292, 128addcomd 11461 . . . . . 6 (𝜑 → (1 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1))
130108, 113, 1293eqtrd 2779 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1))
13197, 130oveq12d 7449 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) + Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1)))
132 nnm1nn0 12565 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
134116, 133expcld 14183 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (-1↑(𝑘 − 1)) ∈ ℂ)
135134, 121mulcld 11279 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ)
136135expcom 413 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝜑 → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ))
137115, 136syl 17 . . . . . . . . 9 (𝑘 ∈ (1...(𝑁 − 1)) → (𝜑 → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ))
138137, 125eleq2s 2857 . . . . . . . 8 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (𝜑 → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ))
139138impcom 407 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ)
140114, 139fsumcl 15766 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ)
1414a1i 11 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
14228, 98syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
143141, 142expcld 14183 . . . . . . 7 (𝜑 → (-1↑(𝑁 − 1)) ∈ ℂ)
14428nnnn0d 12585 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1451, 144expcld 14183 . . . . . . 7 (𝜑 → (𝐴𝑁) ∈ ℂ)
146143, 145mulcld 11279 . . . . . 6 (𝜑 → ((-1↑(𝑁 − 1)) · (𝐴𝑁)) ∈ ℂ)
147140, 146addcld 11278 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) ∈ ℂ)
148147, 128, 2addassd 11281 . . . 4 (𝜑 → (((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + 1) = ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1)))
149140, 146addcomd 11461 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))))
150149oveq1d 7446 . . . . . 6 (𝜑 → ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((((-1↑(𝑁 − 1)) · (𝐴𝑁)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
151146, 140, 128addassd 11281 . . . . . 6 (𝜑 → ((((-1↑(𝑁 − 1)) · (𝐴𝑁)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))))
152 nncn 12272 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
153 npcan1 11686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
154152, 153syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → ((𝑘 − 1) + 1) = 𝑘)
155154eqcomd 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 = ((𝑘 − 1) + 1))
156155oveq2d 7447 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (-1↑𝑘) = (-1↑((𝑘 − 1) + 1)))
1574a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → -1 ∈ ℂ)
158157, 132expp1d 14184 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (-1↑((𝑘 − 1) + 1)) = ((-1↑(𝑘 − 1)) · -1))
159157, 132expcld 14183 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → (-1↑(𝑘 − 1)) ∈ ℂ)
160159, 157mulcomd 11280 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) · -1) = (-1 · (-1↑(𝑘 − 1))))
161156, 158, 1603eqtrd 2779 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (-1↑𝑘) = (-1 · (-1↑(𝑘 − 1))))
162161oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + (-1↑𝑘)) = ((-1↑(𝑘 − 1)) + (-1 · (-1↑(𝑘 − 1)))))
163159mulm1d 11713 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (-1 · (-1↑(𝑘 − 1))) = -(-1↑(𝑘 − 1)))
164163oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + (-1 · (-1↑(𝑘 − 1)))) = ((-1↑(𝑘 − 1)) + -(-1↑(𝑘 − 1))))
165159negidd 11608 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + -(-1↑(𝑘 − 1))) = 0)
166162, 164, 1653eqtrd 2779 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + (-1↑𝑘)) = 0)
167166adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((-1↑(𝑘 − 1)) + (-1↑𝑘)) = 0)
168167oveq1d 7446 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((-1↑(𝑘 − 1)) + (-1↑𝑘)) · (𝐴𝑘)) = (0 · (𝐴𝑘)))
169134, 119, 121adddird 11284 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((-1↑(𝑘 − 1)) + (-1↑𝑘)) · (𝐴𝑘)) = (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))))
170121mul02d 11457 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 · (𝐴𝑘)) = 0)
171168, 169, 1703eqtr3d 2783 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0)
172171expcom 413 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝜑 → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0))
173115, 172syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 − 1)) → (𝜑 → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0))
174173, 125eleq2s 2857 . . . . . . . . . . 11 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (𝜑 → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0))
175174impcom 407 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0)
176175sumeq2dv 15735 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))0)
177114, 139, 127fsumadd 15773 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
178114olcd 874 . . . . . . . . . 10 (𝜑 → (((0 + 1)...(𝑁 − 1)) ⊆ (ℤ‘1) ∨ ((0 + 1)...(𝑁 − 1)) ∈ Fin))
179 sumz 15755 . . . . . . . . . 10 ((((0 + 1)...(𝑁 − 1)) ⊆ (ℤ‘1) ∨ ((0 + 1)...(𝑁 − 1)) ∈ Fin) → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))0 = 0)
180178, 179syl 17 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))0 = 0)
181176, 177, 1803eqtr3d 2783 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = 0)
182181oveq2d 7447 . . . . . . 7 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 0))
183146addridd 11459 . . . . . . 7 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 0) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
184182, 183eqtrd 2775 . . . . . 6 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
185150, 151, 1843eqtrd 2779 . . . . 5 (𝜑 → ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
186185oveq1d 7446 . . . 4 (𝜑 → (((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + 1) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1))
187131, 148, 1863eqtr2d 2781 . . 3 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) + Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1))
18813, 25, 1873eqtrd 2779 . 2 (𝜑 → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1))
189188eqcomd 2741 1 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  cn 12264  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  cexp 14099  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  oddpwp1fsum  16426
  Copyright terms: Public domain W3C validator