MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwp1fsum Structured version   Visualization version   GIF version

Theorem pwp1fsum 15737
Description: The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.)
Hypotheses
Ref Expression
pwp1fsum.a (𝜑𝐴 ∈ ℂ)
pwp1fsum.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pwp1fsum (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwp1fsum
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 pwp1fsum.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 1cnd 10630 . . . 4 (𝜑 → 1 ∈ ℂ)
3 fzfid 13336 . . . . 5 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
4 neg1cn 11745 . . . . . . . 8 -1 ∈ ℂ
54a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → -1 ∈ ℂ)
6 elfznn0 12995 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
76adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
85, 7expcld 13505 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (-1↑𝑘) ∈ ℂ)
91adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
109, 7expcld 13505 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
118, 10mulcld 10655 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
123, 11fsumcl 15085 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
131, 2, 12adddird 10660 . . 3 (𝜑 → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + (1 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))))
143, 1, 11fsummulc2 15134 . . . . 5 (𝜑 → (𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴 · ((-1↑𝑘) · (𝐴𝑘))))
159, 11mulcomd 10656 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 · ((-1↑𝑘) · (𝐴𝑘))) = (((-1↑𝑘) · (𝐴𝑘)) · 𝐴))
168, 10, 9mulassd 10658 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (((-1↑𝑘) · (𝐴𝑘)) · 𝐴) = ((-1↑𝑘) · ((𝐴𝑘) · 𝐴)))
17 expp1 13431 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
181, 6, 17syl2an 595 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
1918eqcomd 2832 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
2019oveq2d 7166 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((-1↑𝑘) · ((𝐴𝑘) · 𝐴)) = ((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2115, 16, 203eqtrd 2865 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 · ((-1↑𝑘) · (𝐴𝑘))) = ((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2221sumeq2dv 15055 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴 · ((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2314, 22eqtrd 2861 . . . 4 (𝜑 → (𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))))
2412mulid2d 10653 . . . 4 (𝜑 → (1 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))
2523, 24oveq12d 7168 . . 3 (𝜑 → ((𝐴 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + (1 · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) + Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
26 1zzd 12007 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
27 0zd 11987 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
28 pwp1fsum.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
29 nnz 11998 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
30 peano2zm 12019 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3129, 30syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
3228, 31syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
33 peano2nn0 11931 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
346, 33syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → (𝑘 + 1) ∈ ℕ0)
3534adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈ ℕ0)
369, 35expcld 13505 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
378, 36mulcld 10655 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((-1↑𝑘) · (𝐴↑(𝑘 + 1))) ∈ ℂ)
38 oveq2 7158 . . . . . . . 8 (𝑘 = (𝑙 − 1) → (-1↑𝑘) = (-1↑(𝑙 − 1)))
39 oveq1 7157 . . . . . . . . 9 (𝑘 = (𝑙 − 1) → (𝑘 + 1) = ((𝑙 − 1) + 1))
4039oveq2d 7166 . . . . . . . 8 (𝑘 = (𝑙 − 1) → (𝐴↑(𝑘 + 1)) = (𝐴↑((𝑙 − 1) + 1)))
4138, 40oveq12d 7168 . . . . . . 7 (𝑘 = (𝑙 − 1) → ((-1↑𝑘) · (𝐴↑(𝑘 + 1))) = ((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))))
4226, 27, 32, 37, 41fsumshft 15130 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) = Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))))
43 elfzelz 12903 . . . . . . . . . . . 12 (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) → 𝑙 ∈ ℤ)
4443zcnd 12082 . . . . . . . . . . 11 (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) → 𝑙 ∈ ℂ)
4544adantl 482 . . . . . . . . . 10 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → 𝑙 ∈ ℂ)
46 npcan1 11059 . . . . . . . . . 10 (𝑙 ∈ ℂ → ((𝑙 − 1) + 1) = 𝑙)
4745, 46syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → ((𝑙 − 1) + 1) = 𝑙)
4847oveq2d 7166 . . . . . . . 8 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → (𝐴↑((𝑙 − 1) + 1)) = (𝐴𝑙))
4948oveq2d 7166 . . . . . . 7 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → ((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))) = ((-1↑(𝑙 − 1)) · (𝐴𝑙)))
5049sumeq2dv 15055 . . . . . 6 (𝜑 → Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴↑((𝑙 − 1) + 1))) = Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)))
5128nncnd 11648 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
52 npcan1 11059 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54 0p1e1 11753 . . . . . . . . . . . 12 (0 + 1) = 1
5554fveq2i 6672 . . . . . . . . . . 11 (ℤ‘(0 + 1)) = (ℤ‘1)
56 nnuz 12275 . . . . . . . . . . 11 ℕ = (ℤ‘1)
5755, 56eqtr4i 2852 . . . . . . . . . 10 (ℤ‘(0 + 1)) = ℕ
5857a1i 11 . . . . . . . . 9 (𝜑 → (ℤ‘(0 + 1)) = ℕ)
5928, 53, 583eltr4d 2933 . . . . . . . 8 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(0 + 1)))
6054oveq1i 7160 . . . . . . . . . . 11 ((0 + 1)...((𝑁 − 1) + 1)) = (1...((𝑁 − 1) + 1))
6160eleq2i 2909 . . . . . . . . . 10 (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) ↔ 𝑙 ∈ (1...((𝑁 − 1) + 1)))
624a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → -1 ∈ ℂ)
63 nnm1nn0 11932 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ → (𝑙 − 1) ∈ ℕ0)
6463adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → (𝑙 − 1) ∈ ℕ0)
6562, 64expcld 13505 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ℕ) → (-1↑(𝑙 − 1)) ∈ ℂ)
661adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → 𝐴 ∈ ℂ)
67 nnnn0 11898 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ → 𝑙 ∈ ℕ0)
6867adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ℕ) → 𝑙 ∈ ℕ0)
6966, 68expcld 13505 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℂ)
7065, 69mulcld 10655 . . . . . . . . . . . 12 ((𝜑𝑙 ∈ ℕ) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ)
7170expcom 414 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (𝜑 → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ))
72 elfznn 12931 . . . . . . . . . . 11 (𝑙 ∈ (1...((𝑁 − 1) + 1)) → 𝑙 ∈ ℕ)
7371, 72syl11 33 . . . . . . . . . 10 (𝜑 → (𝑙 ∈ (1...((𝑁 − 1) + 1)) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ))
7461, 73syl5bi 243 . . . . . . . . 9 (𝜑 → (𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1)) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ))
7574imp 407 . . . . . . . 8 ((𝜑𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) ∈ ℂ)
76 oveq1 7157 . . . . . . . . . 10 (𝑙 = ((𝑁 − 1) + 1) → (𝑙 − 1) = (((𝑁 − 1) + 1) − 1))
7776oveq2d 7166 . . . . . . . . 9 (𝑙 = ((𝑁 − 1) + 1) → (-1↑(𝑙 − 1)) = (-1↑(((𝑁 − 1) + 1) − 1)))
78 oveq2 7158 . . . . . . . . 9 (𝑙 = ((𝑁 − 1) + 1) → (𝐴𝑙) = (𝐴↑((𝑁 − 1) + 1)))
7977, 78oveq12d 7168 . . . . . . . 8 (𝑙 = ((𝑁 − 1) + 1) → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) = ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1))))
8059, 75, 79fsumm1 15101 . . . . . . 7 (𝜑 → Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = (Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) + ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1)))))
8132zcnd 12082 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℂ)
82 pncan1 11058 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℂ → (((𝑁 − 1) + 1) − 1) = (𝑁 − 1))
8381, 82syl 17 . . . . . . . . . . 11 (𝜑 → (((𝑁 − 1) + 1) − 1) = (𝑁 − 1))
8483oveq2d 7166 . . . . . . . . . 10 (𝜑 → ((0 + 1)...(((𝑁 − 1) + 1) − 1)) = ((0 + 1)...(𝑁 − 1)))
8584sumeq1d 15053 . . . . . . . . 9 (𝜑 → Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = Σ𝑙 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)))
86 oveq1 7157 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 − 1) = (𝑘 − 1))
8786oveq2d 7166 . . . . . . . . . . 11 (𝑙 = 𝑘 → (-1↑(𝑙 − 1)) = (-1↑(𝑘 − 1)))
88 oveq2 7158 . . . . . . . . . . 11 (𝑙 = 𝑘 → (𝐴𝑙) = (𝐴𝑘))
8987, 88oveq12d 7168 . . . . . . . . . 10 (𝑙 = 𝑘 → ((-1↑(𝑙 − 1)) · (𝐴𝑙)) = ((-1↑(𝑘 − 1)) · (𝐴𝑘)))
9089cbvsumv 15048 . . . . . . . . 9 Σ𝑙 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))
9185, 90syl6eq 2877 . . . . . . . 8 (𝜑 → Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)))
9283oveq2d 7166 . . . . . . . . 9 (𝜑 → (-1↑(((𝑁 − 1) + 1) − 1)) = (-1↑(𝑁 − 1)))
9353oveq2d 7166 . . . . . . . . 9 (𝜑 → (𝐴↑((𝑁 − 1) + 1)) = (𝐴𝑁))
9492, 93oveq12d 7168 . . . . . . . 8 (𝜑 → ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1))) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
9591, 94oveq12d 7168 . . . . . . 7 (𝜑 → (Σ𝑙 ∈ ((0 + 1)...(((𝑁 − 1) + 1) − 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) + ((-1↑(((𝑁 − 1) + 1) − 1)) · (𝐴↑((𝑁 − 1) + 1)))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))))
9680, 95eqtrd 2861 . . . . . 6 (𝜑 → Σ𝑙 ∈ ((0 + 1)...((𝑁 − 1) + 1))((-1↑(𝑙 − 1)) · (𝐴𝑙)) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))))
9742, 50, 963eqtrd 2865 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))))
98 nnm1nn0 11932 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
99 elnn0uz 12277 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
10098, 99sylib 219 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
10128, 100syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
102 oveq2 7158 . . . . . . . . 9 (𝑘 = 0 → (-1↑𝑘) = (-1↑0))
103 exp0 13428 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
1044, 103ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
105102, 104syl6eq 2877 . . . . . . . 8 (𝑘 = 0 → (-1↑𝑘) = 1)
106 oveq2 7158 . . . . . . . 8 (𝑘 = 0 → (𝐴𝑘) = (𝐴↑0))
107105, 106oveq12d 7168 . . . . . . 7 (𝑘 = 0 → ((-1↑𝑘) · (𝐴𝑘)) = (1 · (𝐴↑0)))
108101, 11, 107fsum1p 15103 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) = ((1 · (𝐴↑0)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
1091exp0d 13499 . . . . . . . . 9 (𝜑 → (𝐴↑0) = 1)
110109oveq2d 7166 . . . . . . . 8 (𝜑 → (1 · (𝐴↑0)) = (1 · 1))
111 1t1e1 11793 . . . . . . . 8 (1 · 1) = 1
112110, 111syl6eq 2877 . . . . . . 7 (𝜑 → (1 · (𝐴↑0)) = 1)
113112oveq1d 7165 . . . . . 6 (𝜑 → ((1 · (𝐴↑0)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (1 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
114 fzfid 13336 . . . . . . . 8 (𝜑 → ((0 + 1)...(𝑁 − 1)) ∈ Fin)
115 elfznn 12931 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ)
1164a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → -1 ∈ ℂ)
117 nnnn0 11898 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
118117adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
119116, 118expcld 13505 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (-1↑𝑘) ∈ ℂ)
1201adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
121120, 118expcld 13505 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
122119, 121mulcld 10655 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
123122expcom 414 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝜑 → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ))
124115, 123syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑁 − 1)) → (𝜑 → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ))
12554oveq1i 7160 . . . . . . . . . 10 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
126124, 125eleq2s 2936 . . . . . . . . 9 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (𝜑 → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ))
127126impcom 408 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
128114, 127fsumcl 15085 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
1292, 128addcomd 10836 . . . . . 6 (𝜑 → (1 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1))
130108, 113, 1293eqtrd 2865 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1))
13197, 130oveq12d 7168 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) + Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1)))
132 nnm1nn0 11932 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
133132adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
134116, 133expcld 13505 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (-1↑(𝑘 − 1)) ∈ ℂ)
135134, 121mulcld 10655 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ)
136135expcom 414 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝜑 → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ))
137115, 136syl 17 . . . . . . . . 9 (𝑘 ∈ (1...(𝑁 − 1)) → (𝜑 → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ))
138137, 125eleq2s 2936 . . . . . . . 8 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (𝜑 → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ))
139138impcom 408 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ)
140114, 139fsumcl 15085 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) ∈ ℂ)
1414a1i 11 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
14228, 98syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
143141, 142expcld 13505 . . . . . . 7 (𝜑 → (-1↑(𝑁 − 1)) ∈ ℂ)
14428nnnn0d 11949 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1451, 144expcld 13505 . . . . . . 7 (𝜑 → (𝐴𝑁) ∈ ℂ)
146143, 145mulcld 10655 . . . . . 6 (𝜑 → ((-1↑(𝑁 − 1)) · (𝐴𝑁)) ∈ ℂ)
147140, 146addcld 10654 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) ∈ ℂ)
148147, 128, 2addassd 10657 . . . 4 (𝜑 → (((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + 1) = ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)) + 1)))
149140, 146addcomd 10836 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))))
150149oveq1d 7165 . . . . . 6 (𝜑 → ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((((-1↑(𝑁 − 1)) · (𝐴𝑁)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
151146, 140, 128addassd 10657 . . . . . 6 (𝜑 → ((((-1↑(𝑁 − 1)) · (𝐴𝑁)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))))
152 nncn 11640 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
153 npcan1 11059 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
154152, 153syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → ((𝑘 − 1) + 1) = 𝑘)
155154eqcomd 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 = ((𝑘 − 1) + 1))
156155oveq2d 7166 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (-1↑𝑘) = (-1↑((𝑘 − 1) + 1)))
1574a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → -1 ∈ ℂ)
158157, 132expp1d 13506 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (-1↑((𝑘 − 1) + 1)) = ((-1↑(𝑘 − 1)) · -1))
159157, 132expcld 13505 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → (-1↑(𝑘 − 1)) ∈ ℂ)
160159, 157mulcomd 10656 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) · -1) = (-1 · (-1↑(𝑘 − 1))))
161156, 158, 1603eqtrd 2865 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (-1↑𝑘) = (-1 · (-1↑(𝑘 − 1))))
162161oveq2d 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + (-1↑𝑘)) = ((-1↑(𝑘 − 1)) + (-1 · (-1↑(𝑘 − 1)))))
163159mulm1d 11086 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (-1 · (-1↑(𝑘 − 1))) = -(-1↑(𝑘 − 1)))
164163oveq2d 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + (-1 · (-1↑(𝑘 − 1)))) = ((-1↑(𝑘 − 1)) + -(-1↑(𝑘 − 1))))
165159negidd 10981 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + -(-1↑(𝑘 − 1))) = 0)
166162, 164, 1653eqtrd 2865 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((-1↑(𝑘 − 1)) + (-1↑𝑘)) = 0)
167166adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((-1↑(𝑘 − 1)) + (-1↑𝑘)) = 0)
168167oveq1d 7165 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((-1↑(𝑘 − 1)) + (-1↑𝑘)) · (𝐴𝑘)) = (0 · (𝐴𝑘)))
169134, 119, 121adddird 10660 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((-1↑(𝑘 − 1)) + (-1↑𝑘)) · (𝐴𝑘)) = (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))))
170121mul02d 10832 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 · (𝐴𝑘)) = 0)
171168, 169, 1703eqtr3d 2869 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0)
172171expcom 414 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝜑 → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0))
173115, 172syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 − 1)) → (𝜑 → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0))
174173, 125eleq2s 2936 . . . . . . . . . . 11 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (𝜑 → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0))
175174impcom 408 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → (((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = 0)
176175sumeq2dv 15055 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))0)
177114, 139, 127fsumadd 15091 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑𝑘) · (𝐴𝑘))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
178114olcd 872 . . . . . . . . . 10 (𝜑 → (((0 + 1)...(𝑁 − 1)) ⊆ (ℤ‘1) ∨ ((0 + 1)...(𝑁 − 1)) ∈ Fin))
179 sumz 15074 . . . . . . . . . 10 ((((0 + 1)...(𝑁 − 1)) ⊆ (ℤ‘1) ∨ ((0 + 1)...(𝑁 − 1)) ∈ Fin) → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))0 = 0)
180178, 179syl 17 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))0 = 0)
181176, 177, 1803eqtr3d 2869 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = 0)
182181oveq2d 7166 . . . . . . 7 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 0))
183146addid1d 10834 . . . . . . 7 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 0) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
184182, 183eqtrd 2861 . . . . . 6 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘)))) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
185150, 151, 1843eqtrd 2865 . . . . 5 (𝜑 → ((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((-1↑(𝑁 − 1)) · (𝐴𝑁)))
186185oveq1d 7165 . . . 4 (𝜑 → (((Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑(𝑘 − 1)) · (𝐴𝑘)) + ((-1↑(𝑁 − 1)) · (𝐴𝑁))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) + 1) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1))
187131, 148, 1863eqtr2d 2867 . . 3 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑(𝑘 + 1))) + Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1))
18813, 25, 1873eqtrd 2865 . 2 (𝜑 → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))) = (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1))
189188eqcomd 2832 1 (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴𝑁)) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843   = wceq 1530  wcel 2107  wss 3940  cfv 6354  (class class class)co 7150  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12887  cexp 13424  Σcsu 15037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-fz 12888  df-fzo 13029  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038
This theorem is referenced by:  oddpwp1fsum  15738
  Copyright terms: Public domain W3C validator