Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1exp | Structured version Visualization version GIF version |
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 10971 | . . . 4 ⊢ 1 ∈ V | |
2 | 1 | snid 4597 | . . 3 ⊢ 1 ∈ {1} |
3 | ax-1ne0 10940 | . . 3 ⊢ 1 ≠ 0 | |
4 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | snssi 4741 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
7 | elsni 4578 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
8 | elsni 4578 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
9 | oveq12 7284 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
10 | 1t1e1 12135 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
11 | 9, 10 | eqtrdi 2794 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
12 | 7, 8, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
13 | ovex 7308 | . . . . . 6 ⊢ (𝑥 · 𝑦) ∈ V | |
14 | 13 | elsn 4576 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1) |
15 | 12, 14 | sylibr 233 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
16 | 7 | oveq2d 7291 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
17 | 1div1e1 11665 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
18 | 16, 17 | eqtrdi 2794 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
19 | ovex 7308 | . . . . . . 7 ⊢ (1 / 𝑥) ∈ V | |
20 | 19 | elsn 4576 | . . . . . 6 ⊢ ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1) |
21 | 18, 20 | sylibr 233 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {1}) |
23 | 6, 15, 2, 22 | expcl2lem 13794 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
24 | 2, 3, 23 | mp3an12 1450 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
25 | elsni 4578 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
26 | 24, 25 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 {csn 4561 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 ℤcz 12319 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: exprec 13824 sq1 13912 iexpcyc 13923 faclbnd4lem1 14007 iseraltlem2 15394 iseraltlem3 15395 binom1p 15543 binom11 15544 pwm1geoser 15581 esum 15790 ege2le3 15799 eirrlem 15913 odzdvds 16496 efmnd1hash 18531 iblabsr 24994 iblmulc2 24995 abelthlem1 25590 abelthlem3 25592 abelthlem8 25598 abelthlem9 25599 ef2kpi 25635 root1cj 25909 cxpeq 25910 quart 26011 leibpi 26092 log2cnv 26094 mule1 26297 lgseisenlem1 26523 lgseisenlem4 26526 lgseisen 26527 lgsquadlem1 26528 lgsquad2lem1 26532 m1lgs 26536 dchrisum0flblem1 26656 subfaclim 33150 iblmulc2nc 35842 lcmineqlem1 40037 lcmineqlem3 40039 lcmineqlem12 40048 aks4d1p1p2 40078 nn0rppwr 40333 numdenexp 40337 zrtelqelz 40345 expdioph 40845 lhe4.4ex1a 41947 fprodexp 43135 stoweidlem7 43548 stirlinglem5 43619 stirlinglem7 43621 stirlinglem10 43624 2pwp1prm 45041 m1expevenALTV 45099 4fppr1 45187 altgsumbc 45688 |
Copyright terms: Public domain | W3C validator |