| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1exp | Structured version Visualization version GIF version | ||
| Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| 1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11130 | . . . 4 ⊢ 1 ∈ V | |
| 2 | 1 | snid 4616 | . . 3 ⊢ 1 ∈ {1} |
| 3 | ax-1ne0 11097 | . . 3 ⊢ 1 ≠ 0 | |
| 4 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | snssi 4762 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
| 7 | elsni 4596 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
| 8 | elsni 4596 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
| 9 | oveq12 7362 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 10 | 1t1e1 12304 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
| 11 | 9, 10 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
| 12 | 7, 8, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
| 13 | ovex 7386 | . . . . . 6 ⊢ (𝑥 · 𝑦) ∈ V | |
| 14 | 13 | elsn 4594 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1) |
| 15 | 12, 14 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
| 16 | 7 | oveq2d 7369 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
| 17 | 1div1e1 11834 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
| 18 | 16, 17 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
| 19 | ovex 7386 | . . . . . . 7 ⊢ (1 / 𝑥) ∈ V | |
| 20 | 19 | elsn 4594 | . . . . . 6 ⊢ ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1) |
| 21 | 18, 20 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {1}) |
| 23 | 6, 15, 2, 22 | expcl2lem 13999 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
| 24 | 2, 3, 23 | mp3an12 1453 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
| 25 | elsni 4596 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
| 26 | 24, 25 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 {csn 4579 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 / cdiv 11796 ℤcz 12490 ↑cexp 13987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-exp 13988 |
| This theorem is referenced by: exprec 14029 sq1 14121 iexpcyc 14133 faclbnd4lem1 14219 iseraltlem2 15609 iseraltlem3 15610 binom1p 15757 binom11 15758 pwm1geoser 15795 esum 16006 ege2le3 16016 eirrlem 16132 nn0rppwr 16491 numdenexp 16690 odzdvds 16726 efmnd1hash 18785 iblabsr 25748 iblmulc2 25749 abelthlem1 26358 abelthlem3 26360 abelthlem8 26366 abelthlem9 26367 ef2kpi 26404 root1cj 26683 cxpeq 26684 zrtelqelz 26685 quart 26788 leibpi 26869 log2cnv 26871 mule1 27075 lgseisenlem1 27303 lgseisenlem4 27306 lgseisen 27307 lgsquadlem1 27308 lgsquad2lem1 27312 m1lgs 27316 dchrisum0flblem1 27436 cos9thpiminplylem1 33768 subfaclim 35180 iblmulc2nc 37684 lcmineqlem1 42022 lcmineqlem3 42024 lcmineqlem12 42033 aks4d1p1p2 42063 explt1d 42316 expeq1d 42317 expeqidd 42318 expdioph 43016 lhe4.4ex1a 44322 fprodexp 45595 stoweidlem7 46008 stirlinglem5 46079 stirlinglem7 46081 stirlinglem10 46084 2pwp1prm 47593 m1expevenALTV 47651 4fppr1 47739 altgsumbc 48356 |
| Copyright terms: Public domain | W3C validator |