| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1exp | Structured version Visualization version GIF version | ||
| Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| 1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11103 | . . . 4 ⊢ 1 ∈ V | |
| 2 | 1 | snid 4610 | . . 3 ⊢ 1 ∈ {1} |
| 3 | ax-1ne0 11070 | . . 3 ⊢ 1 ≠ 0 | |
| 4 | ax-1cn 11059 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | snssi 4755 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
| 7 | elsni 4588 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
| 8 | elsni 4588 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
| 9 | oveq12 7350 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 10 | 1t1e1 12277 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
| 11 | 9, 10 | eqtrdi 2782 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
| 12 | 7, 8, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
| 13 | ovex 7374 | . . . . . 6 ⊢ (𝑥 · 𝑦) ∈ V | |
| 14 | 13 | elsn 4586 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1) |
| 15 | 12, 14 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
| 16 | 7 | oveq2d 7357 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
| 17 | 1div1e1 11807 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
| 18 | 16, 17 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
| 19 | ovex 7374 | . . . . . . 7 ⊢ (1 / 𝑥) ∈ V | |
| 20 | 19 | elsn 4586 | . . . . . 6 ⊢ ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1) |
| 21 | 18, 20 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {1}) |
| 23 | 6, 15, 2, 22 | expcl2lem 13975 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
| 24 | 2, 3, 23 | mp3an12 1453 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
| 25 | elsni 4588 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
| 26 | 24, 25 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 {csn 4571 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 · cmul 11006 / cdiv 11769 ℤcz 12463 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: exprec 14005 sq1 14097 iexpcyc 14109 faclbnd4lem1 14195 iseraltlem2 15585 iseraltlem3 15586 binom1p 15733 binom11 15734 pwm1geoser 15771 esum 15982 ege2le3 15992 eirrlem 16108 nn0rppwr 16467 numdenexp 16666 odzdvds 16702 efmnd1hash 18795 iblabsr 25753 iblmulc2 25754 abelthlem1 26363 abelthlem3 26365 abelthlem8 26371 abelthlem9 26372 ef2kpi 26409 root1cj 26688 cxpeq 26689 zrtelqelz 26690 quart 26793 leibpi 26874 log2cnv 26876 mule1 27080 lgseisenlem1 27308 lgseisenlem4 27311 lgseisen 27312 lgsquadlem1 27313 lgsquad2lem1 27317 m1lgs 27321 dchrisum0flblem1 27441 cos9thpiminplylem1 33787 subfaclim 35224 iblmulc2nc 37725 lcmineqlem1 42062 lcmineqlem3 42064 lcmineqlem12 42073 aks4d1p1p2 42103 explt1d 42356 expeq1d 42357 expeqidd 42358 expdioph 43056 lhe4.4ex1a 44362 fprodexp 45634 stoweidlem7 46045 stirlinglem5 46116 stirlinglem7 46118 stirlinglem10 46121 2pwp1prm 47620 m1expevenALTV 47678 4fppr1 47766 altgsumbc 48383 |
| Copyright terms: Public domain | W3C validator |