![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1exp | Structured version Visualization version GIF version |
Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 11254 | . . . 4 ⊢ 1 ∈ V | |
2 | 1 | snid 4666 | . . 3 ⊢ 1 ∈ {1} |
3 | ax-1ne0 11221 | . . 3 ⊢ 1 ≠ 0 | |
4 | ax-1cn 11210 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | snssi 4812 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
7 | elsni 4647 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
8 | elsni 4647 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
9 | oveq12 7439 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
10 | 1t1e1 12425 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
11 | 9, 10 | eqtrdi 2790 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
12 | 7, 8, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
13 | ovex 7463 | . . . . . 6 ⊢ (𝑥 · 𝑦) ∈ V | |
14 | 13 | elsn 4645 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1) |
15 | 12, 14 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
16 | 7 | oveq2d 7446 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
17 | 1div1e1 11955 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
18 | 16, 17 | eqtrdi 2790 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
19 | ovex 7463 | . . . . . . 7 ⊢ (1 / 𝑥) ∈ V | |
20 | 19 | elsn 4645 | . . . . . 6 ⊢ ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1) |
21 | 18, 20 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {1}) |
23 | 6, 15, 2, 22 | expcl2lem 14110 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
24 | 2, 3, 23 | mp3an12 1450 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
25 | elsni 4647 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
26 | 24, 25 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ⊆ wss 3962 {csn 4630 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 · cmul 11157 / cdiv 11917 ℤcz 12610 ↑cexp 14098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-seq 14039 df-exp 14099 |
This theorem is referenced by: exprec 14140 sq1 14230 iexpcyc 14242 faclbnd4lem1 14328 iseraltlem2 15715 iseraltlem3 15716 binom1p 15863 binom11 15864 pwm1geoser 15901 esum 16112 ege2le3 16122 eirrlem 16236 nn0rppwr 16594 numdenexp 16793 odzdvds 16828 efmnd1hash 18917 iblabsr 25879 iblmulc2 25880 abelthlem1 26489 abelthlem3 26491 abelthlem8 26497 abelthlem9 26498 ef2kpi 26534 root1cj 26813 cxpeq 26814 zrtelqelz 26815 quart 26918 leibpi 26999 log2cnv 27001 mule1 27205 lgseisenlem1 27433 lgseisenlem4 27436 lgseisen 27437 lgsquadlem1 27438 lgsquad2lem1 27442 m1lgs 27446 dchrisum0flblem1 27566 subfaclim 35172 iblmulc2nc 37671 lcmineqlem1 42010 lcmineqlem3 42012 lcmineqlem12 42021 aks4d1p1p2 42051 explt1d 42336 expeq1d 42337 expeqidd 42338 expdioph 43011 lhe4.4ex1a 44324 fprodexp 45549 stoweidlem7 45962 stirlinglem5 46033 stirlinglem7 46035 stirlinglem10 46038 2pwp1prm 47513 m1expevenALTV 47571 4fppr1 47659 altgsumbc 48196 |
Copyright terms: Public domain | W3C validator |