| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1exp | Structured version Visualization version GIF version | ||
| Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| 1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11177 | . . . 4 ⊢ 1 ∈ V | |
| 2 | 1 | snid 4629 | . . 3 ⊢ 1 ∈ {1} |
| 3 | ax-1ne0 11144 | . . 3 ⊢ 1 ≠ 0 | |
| 4 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | snssi 4775 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
| 7 | elsni 4609 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
| 8 | elsni 4609 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
| 9 | oveq12 7399 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 10 | 1t1e1 12350 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
| 11 | 9, 10 | eqtrdi 2781 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
| 12 | 7, 8, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
| 13 | ovex 7423 | . . . . . 6 ⊢ (𝑥 · 𝑦) ∈ V | |
| 14 | 13 | elsn 4607 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1) |
| 15 | 12, 14 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
| 16 | 7 | oveq2d 7406 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
| 17 | 1div1e1 11880 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
| 18 | 16, 17 | eqtrdi 2781 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
| 19 | ovex 7423 | . . . . . . 7 ⊢ (1 / 𝑥) ∈ V | |
| 20 | 19 | elsn 4607 | . . . . . 6 ⊢ ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1) |
| 21 | 18, 20 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {1}) |
| 23 | 6, 15, 2, 22 | expcl2lem 14045 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
| 24 | 2, 3, 23 | mp3an12 1453 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
| 25 | elsni 4609 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
| 26 | 24, 25 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 {csn 4592 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 ℤcz 12536 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: exprec 14075 sq1 14167 iexpcyc 14179 faclbnd4lem1 14265 iseraltlem2 15656 iseraltlem3 15657 binom1p 15804 binom11 15805 pwm1geoser 15842 esum 16053 ege2le3 16063 eirrlem 16179 nn0rppwr 16538 numdenexp 16737 odzdvds 16773 efmnd1hash 18826 iblabsr 25738 iblmulc2 25739 abelthlem1 26348 abelthlem3 26350 abelthlem8 26356 abelthlem9 26357 ef2kpi 26394 root1cj 26673 cxpeq 26674 zrtelqelz 26675 quart 26778 leibpi 26859 log2cnv 26861 mule1 27065 lgseisenlem1 27293 lgseisenlem4 27296 lgseisen 27297 lgsquadlem1 27298 lgsquad2lem1 27302 m1lgs 27306 dchrisum0flblem1 27426 cos9thpiminplylem1 33779 subfaclim 35182 iblmulc2nc 37686 lcmineqlem1 42024 lcmineqlem3 42026 lcmineqlem12 42035 aks4d1p1p2 42065 explt1d 42318 expeq1d 42319 expeqidd 42320 expdioph 43019 lhe4.4ex1a 44325 fprodexp 45599 stoweidlem7 46012 stirlinglem5 46083 stirlinglem7 46085 stirlinglem10 46088 2pwp1prm 47594 m1expevenALTV 47652 4fppr1 47740 altgsumbc 48344 |
| Copyright terms: Public domain | W3C validator |