| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1exp | Structured version Visualization version GIF version | ||
| Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| 1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11231 | . . . 4 ⊢ 1 ∈ V | |
| 2 | 1 | snid 4638 | . . 3 ⊢ 1 ∈ {1} |
| 3 | ax-1ne0 11198 | . . 3 ⊢ 1 ≠ 0 | |
| 4 | ax-1cn 11187 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | snssi 4784 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
| 7 | elsni 4618 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
| 8 | elsni 4618 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
| 9 | oveq12 7414 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 10 | 1t1e1 12402 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
| 11 | 9, 10 | eqtrdi 2786 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
| 12 | 7, 8, 11 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
| 13 | ovex 7438 | . . . . . 6 ⊢ (𝑥 · 𝑦) ∈ V | |
| 14 | 13 | elsn 4616 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1) |
| 15 | 12, 14 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
| 16 | 7 | oveq2d 7421 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
| 17 | 1div1e1 11932 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
| 18 | 16, 17 | eqtrdi 2786 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
| 19 | ovex 7438 | . . . . . . 7 ⊢ (1 / 𝑥) ∈ V | |
| 20 | 19 | elsn 4616 | . . . . . 6 ⊢ ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1) |
| 21 | 18, 20 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {1}) |
| 23 | 6, 15, 2, 22 | expcl2lem 14091 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
| 24 | 2, 3, 23 | mp3an12 1453 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
| 25 | elsni 4618 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
| 26 | 24, 25 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 {csn 4601 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 · cmul 11134 / cdiv 11894 ℤcz 12588 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: exprec 14121 sq1 14213 iexpcyc 14225 faclbnd4lem1 14311 iseraltlem2 15699 iseraltlem3 15700 binom1p 15847 binom11 15848 pwm1geoser 15885 esum 16096 ege2le3 16106 eirrlem 16222 nn0rppwr 16580 numdenexp 16779 odzdvds 16815 efmnd1hash 18870 iblabsr 25783 iblmulc2 25784 abelthlem1 26393 abelthlem3 26395 abelthlem8 26401 abelthlem9 26402 ef2kpi 26439 root1cj 26718 cxpeq 26719 zrtelqelz 26720 quart 26823 leibpi 26904 log2cnv 26906 mule1 27110 lgseisenlem1 27338 lgseisenlem4 27341 lgseisen 27342 lgsquadlem1 27343 lgsquad2lem1 27347 m1lgs 27351 dchrisum0flblem1 27471 cos9thpiminplylem1 33816 subfaclim 35210 iblmulc2nc 37709 lcmineqlem1 42042 lcmineqlem3 42044 lcmineqlem12 42053 aks4d1p1p2 42083 explt1d 42372 expeq1d 42373 expeqidd 42374 expdioph 43047 lhe4.4ex1a 44353 fprodexp 45623 stoweidlem7 46036 stirlinglem5 46107 stirlinglem7 46109 stirlinglem10 46112 2pwp1prm 47603 m1expevenALTV 47661 4fppr1 47749 altgsumbc 48327 |
| Copyright terms: Public domain | W3C validator |