![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwn | Structured version Visualization version GIF version |
Description: A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
Ref | Expression |
---|---|
cshwn | ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0csh0 14747 | . . . 4 ⊢ (∅ cyclShift (♯‘𝑊)) = ∅ | |
2 | oveq1 7418 | . . . 4 ⊢ (∅ = 𝑊 → (∅ cyclShift (♯‘𝑊)) = (𝑊 cyclShift (♯‘𝑊))) | |
3 | id 22 | . . . 4 ⊢ (∅ = 𝑊 → ∅ = 𝑊) | |
4 | 1, 2, 3 | 3eqtr3a 2796 | . . 3 ⊢ (∅ = 𝑊 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
5 | 4 | a1d 25 | . 2 ⊢ (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)) |
6 | lencl 14487 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
7 | 6 | nn0zd 12588 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
8 | cshwmodn 14749 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℤ) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) | |
9 | 7, 8 | mpdan 685 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) |
11 | necom 2994 | . . . . . . . . 9 ⊢ (∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅) | |
12 | lennncl 14488 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
13 | 11, 12 | sylan2b 594 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℕ) |
14 | 13 | nnrpd 13018 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℝ+) |
15 | 14 | ancoms 459 | . . . . . 6 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℝ+) |
16 | modid0 13866 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
18 | 17 | oveq2d 7427 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))) = (𝑊 cyclShift 0)) |
19 | cshw0 14748 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) | |
20 | 19 | adantl 482 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift 0) = 𝑊) |
21 | 10, 18, 20 | 3eqtrd 2776 | . . 3 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
22 | 21 | ex 413 | . 2 ⊢ (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)) |
23 | 5, 22 | pm2.61ine 3025 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 ‘cfv 6543 (class class class)co 7411 0cc0 11112 ℕcn 12216 ℤcz 12562 ℝ+crp 12978 mod cmo 13838 ♯chash 14294 Word cword 14468 cyclShift ccsh 14742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-hash 14295 df-word 14469 df-concat 14525 df-substr 14595 df-pfx 14625 df-csh 14743 |
This theorem is referenced by: 2cshwid 14768 cshweqdif2 14773 scshwfzeqfzo 14781 cshwcshid 14782 clwwisshclwwsn 29524 eucrct2eupth 29753 |
Copyright terms: Public domain | W3C validator |