![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwn | Structured version Visualization version GIF version |
Description: A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
Ref | Expression |
---|---|
cshwn | ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0csh0 13914 | . . . 4 ⊢ (∅ cyclShift (♯‘𝑊)) = ∅ | |
2 | oveq1 6913 | . . . 4 ⊢ (∅ = 𝑊 → (∅ cyclShift (♯‘𝑊)) = (𝑊 cyclShift (♯‘𝑊))) | |
3 | id 22 | . . . 4 ⊢ (∅ = 𝑊 → ∅ = 𝑊) | |
4 | 1, 2, 3 | 3eqtr3a 2886 | . . 3 ⊢ (∅ = 𝑊 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
5 | 4 | a1d 25 | . 2 ⊢ (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)) |
6 | lencl 13594 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
7 | 6 | nn0zd 11809 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
8 | cshwmodn 13917 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℤ) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) | |
9 | 7, 8 | mpdan 680 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) |
10 | 9 | adantl 475 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) |
11 | necom 3053 | . . . . . . . . 9 ⊢ (∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅) | |
12 | lennncl 13595 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
13 | 11, 12 | sylan2b 589 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℕ) |
14 | 13 | nnrpd 12155 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℝ+) |
15 | 14 | ancoms 452 | . . . . . 6 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℝ+) |
16 | modid0 12992 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
18 | 17 | oveq2d 6922 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))) = (𝑊 cyclShift 0)) |
19 | cshw0 13916 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) | |
20 | 19 | adantl 475 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift 0) = 𝑊) |
21 | 10, 18, 20 | 3eqtrd 2866 | . . 3 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
22 | 21 | ex 403 | . 2 ⊢ (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)) |
23 | 5, 22 | pm2.61ine 3083 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ∅c0 4145 ‘cfv 6124 (class class class)co 6906 0cc0 10253 ℕcn 11351 ℤcz 11705 ℝ+crp 12113 mod cmo 12964 ♯chash 13411 Word cword 13575 cyclShift ccsh 13905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-inf 8619 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-fz 12621 df-fzo 12762 df-fl 12889 df-mod 12965 df-hash 13412 df-word 13576 df-concat 13632 df-substr 13702 df-pfx 13751 df-csh 13907 |
This theorem is referenced by: 2cshwid 13936 cshweqdif2 13941 scshwfzeqfzo 13948 cshwcshid 13949 clwwisshclwwsn 27355 eucrct2eupthOLD 27624 eucrct2eupth 27625 |
Copyright terms: Public domain | W3C validator |