MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwn Structured version   Visualization version   GIF version

Theorem cshwn 14820
Description: A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.)
Assertion
Ref Expression
cshwn (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)

Proof of Theorem cshwn
StepHypRef Expression
1 0csh0 14816 . . . 4 (∅ cyclShift (♯‘𝑊)) = ∅
2 oveq1 7417 . . . 4 (∅ = 𝑊 → (∅ cyclShift (♯‘𝑊)) = (𝑊 cyclShift (♯‘𝑊)))
3 id 22 . . . 4 (∅ = 𝑊 → ∅ = 𝑊)
41, 2, 33eqtr3a 2795 . . 3 (∅ = 𝑊 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
54a1d 25 . 2 (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊))
6 lencl 14556 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
76nn0zd 12619 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
8 cshwmodn 14818 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℤ) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))))
97, 8mpdan 687 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))))
109adantl 481 . . . 4 ((∅ ≠ 𝑊𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))))
11 necom 2986 . . . . . . . . 9 (∅ ≠ 𝑊𝑊 ≠ ∅)
12 lennncl 14557 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1311, 12sylan2b 594 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℕ)
1413nnrpd 13054 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℝ+)
1514ancoms 458 . . . . . 6 ((∅ ≠ 𝑊𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℝ+)
16 modid0 13919 . . . . . 6 ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
1715, 16syl 17 . . . . 5 ((∅ ≠ 𝑊𝑊 ∈ Word 𝑉) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
1817oveq2d 7426 . . . 4 ((∅ ≠ 𝑊𝑊 ∈ Word 𝑉) → (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))) = (𝑊 cyclShift 0))
19 cshw0 14817 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
2019adantl 481 . . . 4 ((∅ ≠ 𝑊𝑊 ∈ Word 𝑉) → (𝑊 cyclShift 0) = 𝑊)
2110, 18, 203eqtrd 2775 . . 3 ((∅ ≠ 𝑊𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
2221ex 412 . 2 (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊))
235, 22pm2.61ine 3016 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  c0 4313  cfv 6536  (class class class)co 7410  0cc0 11134  cn 12245  cz 12593  +crp 13013   mod cmo 13891  chash 14353  Word cword 14536   cyclShift ccsh 14811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14354  df-word 14537  df-concat 14594  df-substr 14664  df-pfx 14694  df-csh 14812
This theorem is referenced by:  2cshwid  14837  cshweqdif2  14842  scshwfzeqfzo  14850  cshwcshid  14851  clwwisshclwwsn  30002  eucrct2eupth  30231
  Copyright terms: Public domain W3C validator