Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshwn | Structured version Visualization version GIF version |
Description: A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
Ref | Expression |
---|---|
cshwn | ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0csh0 14494 | . . . 4 ⊢ (∅ cyclShift (♯‘𝑊)) = ∅ | |
2 | oveq1 7275 | . . . 4 ⊢ (∅ = 𝑊 → (∅ cyclShift (♯‘𝑊)) = (𝑊 cyclShift (♯‘𝑊))) | |
3 | id 22 | . . . 4 ⊢ (∅ = 𝑊 → ∅ = 𝑊) | |
4 | 1, 2, 3 | 3eqtr3a 2802 | . . 3 ⊢ (∅ = 𝑊 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
5 | 4 | a1d 25 | . 2 ⊢ (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)) |
6 | lencl 14224 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
7 | 6 | nn0zd 12412 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
8 | cshwmodn 14496 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℤ) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) | |
9 | 7, 8 | mpdan 684 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊)))) |
11 | necom 2997 | . . . . . . . . 9 ⊢ (∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅) | |
12 | lennncl 14225 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
13 | 11, 12 | sylan2b 594 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℕ) |
14 | 13 | nnrpd 12758 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (♯‘𝑊) ∈ ℝ+) |
15 | 14 | ancoms 459 | . . . . . 6 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℝ+) |
16 | modid0 13605 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
18 | 17 | oveq2d 7284 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift ((♯‘𝑊) mod (♯‘𝑊))) = (𝑊 cyclShift 0)) |
19 | cshw0 14495 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) | |
20 | 19 | adantl 482 | . . . 4 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift 0) = 𝑊) |
21 | 10, 18, 20 | 3eqtrd 2782 | . . 3 ⊢ ((∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
22 | 21 | ex 413 | . 2 ⊢ (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)) |
23 | 5, 22 | pm2.61ine 3028 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4257 ‘cfv 6427 (class class class)co 7268 0cc0 10859 ℕcn 11961 ℤcz 12307 ℝ+crp 12718 mod cmo 13577 ♯chash 14032 Word cword 14205 cyclShift ccsh 14489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-sup 9189 df-inf 9190 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-n0 12222 df-z 12308 df-uz 12571 df-rp 12719 df-fz 13228 df-fzo 13371 df-fl 13500 df-mod 13578 df-hash 14033 df-word 14206 df-concat 14262 df-substr 14342 df-pfx 14372 df-csh 14490 |
This theorem is referenced by: 2cshwid 14515 cshweqdif2 14520 scshwfzeqfzo 14527 cshwcshid 14528 clwwisshclwwsn 28366 eucrct2eupth 28595 |
Copyright terms: Public domain | W3C validator |