Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eflog | Structured version Visualization version GIF version |
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
eflog | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflog2 25316 | . . . 4 ⊢ log = ◡(exp ↾ ran log) | |
2 | 1 | fveq1i 6687 | . . 3 ⊢ (log‘𝐴) = (◡(exp ↾ ran log)‘𝐴) |
3 | 2 | fveq2i 6689 | . 2 ⊢ ((exp ↾ ran log)‘(log‘𝐴)) = ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) |
4 | logrncl 25323 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log) | |
5 | 4 | fvresd 6706 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(log‘𝐴)) = (exp‘(log‘𝐴))) |
6 | eldifsn 4685 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
7 | eff1o2 25319 | . . . 4 ⊢ (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) | |
8 | f1ocnvfv2 7057 | . . . 4 ⊢ (((exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) | |
9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {0}) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) |
10 | 6, 9 | sylbir 238 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) |
11 | 3, 5, 10 | 3eqtr3a 2798 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∖ cdif 3850 {csn 4526 ◡ccnv 5534 ran crn 5536 ↾ cres 5537 –1-1-onto→wf1o 6348 ‘cfv 6349 ℂcc 10625 0cc0 10627 expce 15519 logclog 25310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-inf2 9189 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 ax-addf 10706 ax-mulf 10707 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-isom 6358 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-of 7437 df-om 7612 df-1st 7726 df-2nd 7727 df-supp 7869 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-2o 8144 df-er 8332 df-map 8451 df-pm 8452 df-ixp 8520 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-fsupp 8919 df-fi 8960 df-sup 8991 df-inf 8992 df-oi 9059 df-card 9453 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 df-n0 11989 df-z 12075 df-dec 12192 df-uz 12337 df-q 12443 df-rp 12485 df-xneg 12602 df-xadd 12603 df-xmul 12604 df-ioo 12837 df-ioc 12838 df-ico 12839 df-icc 12840 df-fz 12994 df-fzo 13137 df-fl 13265 df-mod 13341 df-seq 13473 df-exp 13534 df-fac 13738 df-bc 13767 df-hash 13795 df-shft 14528 df-cj 14560 df-re 14561 df-im 14562 df-sqrt 14696 df-abs 14697 df-limsup 14930 df-clim 14947 df-rlim 14948 df-sum 15148 df-ef 15525 df-sin 15527 df-cos 15528 df-pi 15530 df-struct 16600 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-mulr 16694 df-starv 16695 df-sca 16696 df-vsca 16697 df-ip 16698 df-tset 16699 df-ple 16700 df-ds 16702 df-unif 16703 df-hom 16704 df-cco 16705 df-rest 16811 df-topn 16812 df-0g 16830 df-gsum 16831 df-topgen 16832 df-pt 16833 df-prds 16836 df-xrs 16890 df-qtop 16895 df-imas 16896 df-xps 16898 df-mre 16972 df-mrc 16973 df-acs 16975 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-submnd 18085 df-mulg 18355 df-cntz 18577 df-cmn 19038 df-psmet 20221 df-xmet 20222 df-met 20223 df-bl 20224 df-mopn 20225 df-fbas 20226 df-fg 20227 df-cnfld 20230 df-top 21657 df-topon 21674 df-topsp 21696 df-bases 21709 df-cld 21782 df-ntr 21783 df-cls 21784 df-nei 21861 df-lp 21899 df-perf 21900 df-cn 21990 df-cnp 21991 df-haus 22078 df-tx 22325 df-hmeo 22518 df-fil 22609 df-fm 22701 df-flim 22702 df-flf 22703 df-xms 23085 df-ms 23086 df-tms 23087 df-cncf 23642 df-limc 24630 df-dv 24631 df-log 25312 |
This theorem is referenced by: logeq0im1 25333 reeflog 25336 lognegb 25345 explog 25349 relog 25352 eflogeq 25357 logcj 25361 efiarg 25362 logimul 25369 logneg2 25370 logmul2 25371 logdiv2 25372 logcnlem4 25400 cxpeq 25510 logrec 25513 cxplogb 25536 ang180lem1 25559 asinneg 25636 efiasin 25638 efiatan2 25667 2efiatan 25668 atantan 25673 birthdaylem2 25702 gamcvg 25805 gamp1 25807 gamcvg2lem 25808 iprodgam 33293 stirlinglem14 43210 |
Copyright terms: Public domain | W3C validator |