Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eflog | Structured version Visualization version GIF version |
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
eflog | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflog2 25761 | . . . 4 ⊢ log = ◡(exp ↾ ran log) | |
2 | 1 | fveq1i 6805 | . . 3 ⊢ (log‘𝐴) = (◡(exp ↾ ran log)‘𝐴) |
3 | 2 | fveq2i 6807 | . 2 ⊢ ((exp ↾ ran log)‘(log‘𝐴)) = ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) |
4 | logrncl 25768 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log) | |
5 | 4 | fvresd 6824 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(log‘𝐴)) = (exp‘(log‘𝐴))) |
6 | eldifsn 4726 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
7 | eff1o2 25764 | . . . 4 ⊢ (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) | |
8 | f1ocnvfv2 7181 | . . . 4 ⊢ (((exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) | |
9 | 7, 8 | mpan 688 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {0}) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) |
10 | 6, 9 | sylbir 234 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) |
11 | 3, 5, 10 | 3eqtr3a 2800 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∖ cdif 3889 {csn 4565 ◡ccnv 5599 ran crn 5601 ↾ cres 5602 –1-1-onto→wf1o 6457 ‘cfv 6458 ℂcc 10915 0cc0 10917 expce 15816 logclog 25755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ioc 13130 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 df-sin 15824 df-cos 15825 df-pi 15827 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-xms 23518 df-ms 23519 df-tms 23520 df-cncf 24086 df-limc 25075 df-dv 25076 df-log 25757 |
This theorem is referenced by: logeq0im1 25778 reeflog 25781 lognegb 25790 explog 25794 relog 25797 eflogeq 25802 logcj 25806 efiarg 25807 logimul 25814 logneg2 25815 logmul2 25816 logdiv2 25817 logcnlem4 25845 cxpeq 25955 logrec 25958 cxplogb 25981 ang180lem1 26004 asinneg 26081 efiasin 26083 efiatan2 26112 2efiatan 26113 atantan 26118 birthdaylem2 26147 gamcvg 26250 gamp1 26252 gamcvg2lem 26253 iprodgam 33753 stirlinglem14 43677 |
Copyright terms: Public domain | W3C validator |