Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchr1re | Structured version Visualization version GIF version |
Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
dchr1re.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchr1re.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchr1re.o | ⊢ 1 = (0g‘𝐺) |
dchr1re.b | ⊢ 𝐵 = (Base‘𝑍) |
dchr1re.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
dchr1re | ⊢ (𝜑 → 1 :𝐵⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr1re.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchr1re.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | dchr1re.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
5 | dchr1re.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 1 | dchrabl 26307 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
7 | ablgrp 19306 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
8 | dchr1re.o | . . . . . 6 ⊢ 1 = (0g‘𝐺) | |
9 | 3, 8 | grpidcl 18522 | . . . . 5 ⊢ (𝐺 ∈ Grp → 1 ∈ (Base‘𝐺)) |
10 | 5, 6, 7, 9 | 4syl 19 | . . . 4 ⊢ (𝜑 → 1 ∈ (Base‘𝐺)) |
11 | 1, 2, 3, 4, 10 | dchrf 26295 | . . 3 ⊢ (𝜑 → 1 :𝐵⟶ℂ) |
12 | 11 | ffnd 6585 | . 2 ⊢ (𝜑 → 1 Fn 𝐵) |
13 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) = 0) → ( 1 ‘𝑥) = 0) | |
14 | 0re 10908 | . . . . 5 ⊢ 0 ∈ ℝ | |
15 | 13, 14 | eqeltrdi 2847 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) = 0) → ( 1 ‘𝑥) ∈ ℝ) |
16 | eqid 2738 | . . . . . 6 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
17 | 5 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → 𝑁 ∈ ℕ) |
18 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (Base‘𝐺)) |
19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
20 | 1, 2, 3, 4, 16, 18, 19 | dchrn0 26303 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 1 ‘𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘𝑍))) |
21 | 20 | biimpa 476 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍)) |
22 | 1, 2, 8, 16, 17, 21 | dchr1 26310 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → ( 1 ‘𝑥) = 1) |
23 | 1re 10906 | . . . . 5 ⊢ 1 ∈ ℝ | |
24 | 22, 23 | eqeltrdi 2847 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → ( 1 ‘𝑥) ∈ ℝ) |
25 | 15, 24 | pm2.61dane 3031 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 ‘𝑥) ∈ ℝ) |
26 | 25 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 1 ‘𝑥) ∈ ℝ) |
27 | ffnfv 6974 | . 2 ⊢ ( 1 :𝐵⟶ℝ ↔ ( 1 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ( 1 ‘𝑥) ∈ ℝ)) | |
28 | 12, 26, 27 | sylanbrc 582 | 1 ⊢ (𝜑 → 1 :𝐵⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 ℕcn 11903 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 Abelcabl 19302 Unitcui 19796 ℤ/nℤczn 20616 DChrcdchr 26285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-nsg 18668 df-eqg 18669 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-cnfld 20511 df-zring 20583 df-zn 20620 df-dchr 26286 |
This theorem is referenced by: rpvmasumlem 26540 |
Copyright terms: Public domain | W3C validator |