MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1re Structured version   Visualization version   GIF version

Theorem dchr1re 26756
Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
dchr1re.g 𝐺 = (DChr‘𝑁)
dchr1re.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1re.o 1 = (0g𝐺)
dchr1re.b 𝐵 = (Base‘𝑍)
dchr1re.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchr1re (𝜑1 :𝐵⟶ℝ)

Proof of Theorem dchr1re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchr1re.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1re.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2733 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 dchr1re.b . . . 4 𝐵 = (Base‘𝑍)
5 dchr1re.n . . . . 5 (𝜑𝑁 ∈ ℕ)
61dchrabl 26747 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
7 ablgrp 19648 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 dchr1re.o . . . . . 6 1 = (0g𝐺)
93, 8grpidcl 18847 . . . . 5 (𝐺 ∈ Grp → 1 ∈ (Base‘𝐺))
105, 6, 7, 94syl 19 . . . 4 (𝜑1 ∈ (Base‘𝐺))
111, 2, 3, 4, 10dchrf 26735 . . 3 (𝜑1 :𝐵⟶ℂ)
1211ffnd 6716 . 2 (𝜑1 Fn 𝐵)
13 simpr 486 . . . . 5 (((𝜑𝑥𝐵) ∧ ( 1𝑥) = 0) → ( 1𝑥) = 0)
14 0re 11213 . . . . 5 0 ∈ ℝ
1513, 14eqeltrdi 2842 . . . 4 (((𝜑𝑥𝐵) ∧ ( 1𝑥) = 0) → ( 1𝑥) ∈ ℝ)
16 eqid 2733 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
175ad2antrr 725 . . . . . 6 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → 𝑁 ∈ ℕ)
1810adantr 482 . . . . . . . 8 ((𝜑𝑥𝐵) → 1 ∈ (Base‘𝐺))
19 simpr 486 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
201, 2, 3, 4, 16, 18, 19dchrn0 26743 . . . . . . 7 ((𝜑𝑥𝐵) → (( 1𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘𝑍)))
2120biimpa 478 . . . . . 6 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍))
221, 2, 8, 16, 17, 21dchr1 26750 . . . . 5 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → ( 1𝑥) = 1)
23 1re 11211 . . . . 5 1 ∈ ℝ
2422, 23eqeltrdi 2842 . . . 4 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → ( 1𝑥) ∈ ℝ)
2515, 24pm2.61dane 3030 . . 3 ((𝜑𝑥𝐵) → ( 1𝑥) ∈ ℝ)
2625ralrimiva 3147 . 2 (𝜑 → ∀𝑥𝐵 ( 1𝑥) ∈ ℝ)
27 ffnfv 7115 . 2 ( 1 :𝐵⟶ℝ ↔ ( 1 Fn 𝐵 ∧ ∀𝑥𝐵 ( 1𝑥) ∈ ℝ))
2812, 26, 27sylanbrc 584 1 (𝜑1 :𝐵⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062   Fn wfn 6536  wf 6537  cfv 6541  cc 11105  cr 11106  0cc0 11107  1c1 11108  cn 12209  Basecbs 17141  0gc0g 17382  Grpcgrp 18816  Abelcabl 19644  Unitcui 20162  ℤ/nczn 21044  DChrcdchr 26725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-ec 8702  df-qs 8706  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-0g 17384  df-imas 17451  df-qus 17452  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-mhm 18668  df-grp 18819  df-minusg 18820  df-sbg 18821  df-subg 18998  df-nsg 18999  df-eqg 19000  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-cring 20053  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-subrg 20354  df-lmod 20466  df-lss 20536  df-lsp 20576  df-sra 20778  df-rgmod 20779  df-lidl 20780  df-rsp 20781  df-2idl 20850  df-cnfld 20938  df-zring 21011  df-zn 21048  df-dchr 26726
This theorem is referenced by:  rpvmasumlem  26980
  Copyright terms: Public domain W3C validator