| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchr1re | Structured version Visualization version GIF version | ||
| Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| dchr1re.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchr1re.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchr1re.o | ⊢ 1 = (0g‘𝐺) |
| dchr1re.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchr1re.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| dchr1re | ⊢ (𝜑 → 1 :𝐵⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchr1re.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchr1re.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | dchr1re.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
| 5 | dchr1re.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 1 | dchrabl 27253 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
| 7 | ablgrp 19776 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | dchr1re.o | . . . . . 6 ⊢ 1 = (0g‘𝐺) | |
| 9 | 3, 8 | grpidcl 18957 | . . . . 5 ⊢ (𝐺 ∈ Grp → 1 ∈ (Base‘𝐺)) |
| 10 | 5, 6, 7, 9 | 4syl 19 | . . . 4 ⊢ (𝜑 → 1 ∈ (Base‘𝐺)) |
| 11 | 1, 2, 3, 4, 10 | dchrf 27241 | . . 3 ⊢ (𝜑 → 1 :𝐵⟶ℂ) |
| 12 | 11 | ffnd 6718 | . 2 ⊢ (𝜑 → 1 Fn 𝐵) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) = 0) → ( 1 ‘𝑥) = 0) | |
| 14 | 0re 11246 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 15 | 13, 14 | eqeltrdi 2841 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) = 0) → ( 1 ‘𝑥) ∈ ℝ) |
| 16 | eqid 2734 | . . . . . 6 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
| 17 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → 𝑁 ∈ ℕ) |
| 18 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (Base‘𝐺)) |
| 19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 20 | 1, 2, 3, 4, 16, 18, 19 | dchrn0 27249 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 1 ‘𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘𝑍))) |
| 21 | 20 | biimpa 476 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍)) |
| 22 | 1, 2, 8, 16, 17, 21 | dchr1 27256 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → ( 1 ‘𝑥) = 1) |
| 23 | 1re 11244 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 24 | 22, 23 | eqeltrdi 2841 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ( 1 ‘𝑥) ≠ 0) → ( 1 ‘𝑥) ∈ ℝ) |
| 25 | 15, 24 | pm2.61dane 3018 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 ‘𝑥) ∈ ℝ) |
| 26 | 25 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 1 ‘𝑥) ∈ ℝ) |
| 27 | ffnfv 7120 | . 2 ⊢ ( 1 :𝐵⟶ℝ ↔ ( 1 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ( 1 ‘𝑥) ∈ ℝ)) | |
| 28 | 12, 26, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → 1 :𝐵⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 ℕcn 12249 Basecbs 17230 0gc0g 17460 Grpcgrp 18925 Abelcabl 19772 Unitcui 20328 ℤ/nℤczn 21480 DChrcdchr 27231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 ax-mulf 11218 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-ec 8730 df-qs 8734 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-0g 17462 df-imas 17529 df-qus 17530 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18770 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-nsg 19116 df-eqg 19117 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-cring 20206 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-subrng 20519 df-subrg 20543 df-lmod 20833 df-lss 20903 df-lsp 20943 df-sra 21145 df-rgmod 21146 df-lidl 21185 df-rsp 21186 df-2idl 21227 df-cnfld 21332 df-zring 21425 df-zn 21484 df-dchr 27232 |
| This theorem is referenced by: rpvmasumlem 27486 |
| Copyright terms: Public domain | W3C validator |