MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1re Structured version   Visualization version   GIF version

Theorem dchr1re 27262
Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
dchr1re.g 𝐺 = (DChr‘𝑁)
dchr1re.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1re.o 1 = (0g𝐺)
dchr1re.b 𝐵 = (Base‘𝑍)
dchr1re.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchr1re (𝜑1 :𝐵⟶ℝ)

Proof of Theorem dchr1re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchr1re.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1re.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2734 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 dchr1re.b . . . 4 𝐵 = (Base‘𝑍)
5 dchr1re.n . . . . 5 (𝜑𝑁 ∈ ℕ)
61dchrabl 27253 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
7 ablgrp 19776 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 dchr1re.o . . . . . 6 1 = (0g𝐺)
93, 8grpidcl 18957 . . . . 5 (𝐺 ∈ Grp → 1 ∈ (Base‘𝐺))
105, 6, 7, 94syl 19 . . . 4 (𝜑1 ∈ (Base‘𝐺))
111, 2, 3, 4, 10dchrf 27241 . . 3 (𝜑1 :𝐵⟶ℂ)
1211ffnd 6718 . 2 (𝜑1 Fn 𝐵)
13 simpr 484 . . . . 5 (((𝜑𝑥𝐵) ∧ ( 1𝑥) = 0) → ( 1𝑥) = 0)
14 0re 11246 . . . . 5 0 ∈ ℝ
1513, 14eqeltrdi 2841 . . . 4 (((𝜑𝑥𝐵) ∧ ( 1𝑥) = 0) → ( 1𝑥) ∈ ℝ)
16 eqid 2734 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
175ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → 𝑁 ∈ ℕ)
1810adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → 1 ∈ (Base‘𝐺))
19 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
201, 2, 3, 4, 16, 18, 19dchrn0 27249 . . . . . . 7 ((𝜑𝑥𝐵) → (( 1𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘𝑍)))
2120biimpa 476 . . . . . 6 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍))
221, 2, 8, 16, 17, 21dchr1 27256 . . . . 5 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → ( 1𝑥) = 1)
23 1re 11244 . . . . 5 1 ∈ ℝ
2422, 23eqeltrdi 2841 . . . 4 (((𝜑𝑥𝐵) ∧ ( 1𝑥) ≠ 0) → ( 1𝑥) ∈ ℝ)
2515, 24pm2.61dane 3018 . . 3 ((𝜑𝑥𝐵) → ( 1𝑥) ∈ ℝ)
2625ralrimiva 3133 . 2 (𝜑 → ∀𝑥𝐵 ( 1𝑥) ∈ ℝ)
27 ffnfv 7120 . 2 ( 1 :𝐵⟶ℝ ↔ ( 1 Fn 𝐵 ∧ ∀𝑥𝐵 ( 1𝑥) ∈ ℝ))
2812, 26, 27sylanbrc 583 1 (𝜑1 :𝐵⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050   Fn wfn 6537  wf 6538  cfv 6542  cc 11136  cr 11137  0cc0 11138  1c1 11139  cn 12249  Basecbs 17230  0gc0g 17460  Grpcgrp 18925  Abelcabl 19772  Unitcui 20328  ℤ/nczn 21480  DChrcdchr 27231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-tpos 8234  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-ec 8730  df-qs 8734  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-0g 17462  df-imas 17529  df-qus 17530  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18770  df-grp 18928  df-minusg 18929  df-sbg 18930  df-subg 19115  df-nsg 19116  df-eqg 19117  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-ring 20205  df-cring 20206  df-oppr 20307  df-dvdsr 20330  df-unit 20331  df-invr 20361  df-subrng 20519  df-subrg 20543  df-lmod 20833  df-lss 20903  df-lsp 20943  df-sra 21145  df-rgmod 21146  df-lidl 21185  df-rsp 21186  df-2idl 21227  df-cnfld 21332  df-zring 21425  df-zn 21484  df-dchr 27232
This theorem is referenced by:  rpvmasumlem  27486
  Copyright terms: Public domain W3C validator