Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrp | Structured version Visualization version GIF version |
Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrp | ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 19029 | . . . . 5 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
2 | 1 | ssriv 3881 | . . . 4 ⊢ Abel ⊆ Grp |
3 | imass2 5939 | . . . 4 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
5 | isnumbasabl 40503 | . . . 4 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | |
6 | 5 | biimpi 219 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
7 | 4, 6 | sseldi 3875 | . 2 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
8 | isnumbasgrplem2 40501 | . 2 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | |
9 | 7, 8 | impbii 212 | 1 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2114 ∪ cun 3841 ⊆ wss 3843 dom cdm 5525 “ cima 5528 ‘cfv 6339 harchar 9093 cardccrd 9437 Basecbs 16586 Grpcgrp 18219 Abelcabl 19025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-tpos 7921 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-seqom 8113 df-1o 8131 df-2o 8132 df-oadd 8135 df-omul 8136 df-er 8320 df-ec 8322 df-qs 8326 df-map 8439 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-sup 8979 df-inf 8980 df-oi 9047 df-har 9094 df-wdom 9102 df-dju 9403 df-card 9441 df-acn 9444 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-rp 12473 df-fz 12982 df-fzo 13125 df-fl 13253 df-mod 13329 df-seq 13461 df-hash 13783 df-dvds 15700 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-0g 16818 df-prds 16824 df-pws 16826 df-imas 16884 df-qus 16885 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mulg 18343 df-subg 18394 df-nsg 18395 df-eqg 18396 df-ghm 18474 df-gim 18517 df-gic 18518 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-cring 19419 df-oppr 19495 df-dvdsr 19513 df-rnghom 19589 df-subrg 19652 df-lmod 19755 df-lss 19823 df-lsp 19863 df-sra 20063 df-rgmod 20064 df-lidl 20065 df-rsp 20066 df-2idl 20124 df-cnfld 20218 df-zring 20290 df-zrh 20324 df-zn 20327 df-dsmm 20548 df-frlm 20563 |
This theorem is referenced by: dfacbasgrp 40505 |
Copyright terms: Public domain | W3C validator |