![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrp | Structured version Visualization version GIF version |
Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrp | ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 19824 | . . . . 5 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
2 | 1 | ssriv 4000 | . . . 4 ⊢ Abel ⊆ Grp |
3 | imass2 6125 | . . . 4 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
5 | isnumbasabl 43109 | . . . 4 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | |
6 | 5 | biimpi 216 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
7 | 4, 6 | sselid 3994 | . 2 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
8 | isnumbasgrplem2 43107 | . 2 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | |
9 | 7, 8 | impbii 209 | 1 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2107 ∪ cun 3962 ⊆ wss 3964 dom cdm 5690 “ cima 5693 ‘cfv 6566 harchar 9600 cardccrd 9979 Basecbs 17251 Grpcgrp 18970 Abelcabl 19820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 ax-mulf 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-tpos 8256 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-seqom 8493 df-1o 8511 df-2o 8512 df-oadd 8515 df-omul 8516 df-er 8750 df-ec 8752 df-qs 8756 df-map 8873 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-sup 9486 df-inf 9487 df-oi 9554 df-har 9601 df-wdom 9609 df-dju 9945 df-card 9983 df-acn 9986 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-rp 13039 df-fz 13551 df-fzo 13698 df-fl 13835 df-mod 13913 df-seq 14046 df-hash 14373 df-dvds 16294 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-0g 17494 df-prds 17500 df-pws 17502 df-imas 17561 df-qus 17562 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18815 df-grp 18973 df-minusg 18974 df-sbg 18975 df-mulg 19105 df-subg 19160 df-nsg 19161 df-eqg 19162 df-ghm 19250 df-gim 19296 df-gic 19297 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-cring 20260 df-oppr 20357 df-dvdsr 20380 df-rhm 20495 df-subrng 20569 df-subrg 20593 df-lmod 20883 df-lss 20954 df-lsp 20994 df-sra 21196 df-rgmod 21197 df-lidl 21242 df-rsp 21243 df-2idl 21284 df-cnfld 21389 df-zring 21482 df-zrh 21538 df-zn 21541 df-dsmm 21776 df-frlm 21791 |
This theorem is referenced by: dfacbasgrp 43111 |
Copyright terms: Public domain | W3C validator |