Proof of Theorem odadd
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐺 ∈ Abel) |
2 | | ablgrp 19306 |
. . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐺 ∈ Grp) |
4 | | simpl2 1190 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐴 ∈ 𝑋) |
5 | | simpl3 1191 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐵 ∈ 𝑋) |
6 | | odadd1.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
7 | | odadd1.3 |
. . . . 5
⊢ + =
(+g‘𝐺) |
8 | 6, 7 | grpcl 18500 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 + 𝐵) ∈ 𝑋) |
9 | 3, 4, 5, 8 | syl3anc 1369 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝐴 + 𝐵) ∈ 𝑋) |
10 | | odadd1.1 |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
11 | 6, 10 | odcl 19059 |
. . 3
⊢ ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈
ℕ0) |
12 | 9, 11 | syl 17 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈
ℕ0) |
13 | 6, 10 | odcl 19059 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
14 | 4, 13 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘𝐴) ∈
ℕ0) |
15 | 6, 10 | odcl 19059 |
. . . 4
⊢ (𝐵 ∈ 𝑋 → (𝑂‘𝐵) ∈
ℕ0) |
16 | 5, 15 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘𝐵) ∈
ℕ0) |
17 | 14, 16 | nn0mulcld 12228 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∈
ℕ0) |
18 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) |
19 | 18 | oveq2d 7271 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · 1)) |
20 | 12 | nn0cnd 12225 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ) |
21 | 20 | mulid1d 10923 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · 1) = (𝑂‘(𝐴 + 𝐵))) |
22 | 19, 21 | eqtrd 2778 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) = (𝑂‘(𝐴 + 𝐵))) |
23 | 10, 6, 7 | odadd1 19364 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) |
24 | 23 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) |
25 | 22, 24 | eqbrtrrd 5094 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) |
26 | 10, 6, 7 | odadd2 19365 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) |
27 | 26 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) |
28 | 18 | oveq1d 7270 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2) = (1↑2)) |
29 | | sq1 13840 |
. . . . . 6
⊢
(1↑2) = 1 |
30 | 28, 29 | eqtrdi 2795 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2) = 1) |
31 | 30 | oveq2d 7271 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 1)) |
32 | 31, 21 | eqtrd 2778 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2)) = (𝑂‘(𝐴 + 𝐵))) |
33 | 27, 32 | breqtrd 5096 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ (𝑂‘(𝐴 + 𝐵))) |
34 | | dvdseq 15951 |
. 2
⊢ ((((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ ((𝑂‘𝐴) · (𝑂‘𝐵)) ∈ ℕ0) ∧ ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵)) ∧ ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) |
35 | 12, 17, 25, 33, 34 | syl22anc 835 |
1
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) |