MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Structured version   Visualization version   GIF version

Theorem odadd 19635
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 ๐‘‚ = (odโ€˜๐บ)
odadd1.2 ๐‘‹ = (Baseโ€˜๐บ)
odadd1.3 + = (+gโ€˜๐บ)
Assertion
Ref Expression
odadd (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) = ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐บ โˆˆ Abel)
2 ablgrp 19574 . . . . 5 (๐บ โˆˆ Abel โ†’ ๐บ โˆˆ Grp)
31, 2syl 17 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐บ โˆˆ Grp)
4 simpl2 1193 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐ด โˆˆ ๐‘‹)
5 simpl3 1194 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐ต โˆˆ ๐‘‹)
6 odadd1.2 . . . . 5 ๐‘‹ = (Baseโ€˜๐บ)
7 odadd1.3 . . . . 5 + = (+gโ€˜๐บ)
86, 7grpcl 18763 . . . 4 ((๐บ โˆˆ Grp โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ (๐ด + ๐ต) โˆˆ ๐‘‹)
93, 4, 5, 8syl3anc 1372 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐ด + ๐ต) โˆˆ ๐‘‹)
10 odadd1.1 . . . 4 ๐‘‚ = (odโ€˜๐บ)
116, 10odcl 19325 . . 3 ((๐ด + ๐ต) โˆˆ ๐‘‹ โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„•0)
129, 11syl 17 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„•0)
136, 10odcl 19325 . . . 4 (๐ด โˆˆ ๐‘‹ โ†’ (๐‘‚โ€˜๐ด) โˆˆ โ„•0)
144, 13syl 17 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜๐ด) โˆˆ โ„•0)
156, 10odcl 19325 . . . 4 (๐ต โˆˆ ๐‘‹ โ†’ (๐‘‚โ€˜๐ต) โˆˆ โ„•0)
165, 15syl 17 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜๐ต) โˆˆ โ„•0)
1714, 16nn0mulcld 12485 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆˆ โ„•0)
18 simpr 486 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1)
1918oveq2d 7378 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) = ((๐‘‚โ€˜(๐ด + ๐ต)) ยท 1))
2012nn0cnd 12482 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„‚)
2120mulid1d 11179 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท 1) = (๐‘‚โ€˜(๐ด + ๐ต)))
2219, 21eqtrd 2777 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) = (๐‘‚โ€˜(๐ด + ๐ต)))
2310, 6, 7odadd1 19633 . . . 4 ((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
2423adantr 482 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
2522, 24eqbrtrrd 5134 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
2610, 6, 7odadd2 19634 . . . 4 ((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)))
2726adantr 482 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)))
2818oveq1d 7377 . . . . . 6 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2) = (1โ†‘2))
29 sq1 14106 . . . . . 6 (1โ†‘2) = 1
3028, 29eqtrdi 2793 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2) = 1)
3130oveq2d 7378 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)) = ((๐‘‚โ€˜(๐ด + ๐ต)) ยท 1))
3231, 21eqtrd 2777 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)) = (๐‘‚โ€˜(๐ด + ๐ต)))
3327, 32breqtrd 5136 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ (๐‘‚โ€˜(๐ด + ๐ต)))
34 dvdseq 16203 . 2 ((((๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„•0 โˆง ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆˆ โ„•0) โˆง ((๐‘‚โ€˜(๐ด + ๐ต)) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆง ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ (๐‘‚โ€˜(๐ด + ๐ต)))) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) = ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
3512, 17, 25, 33, 34syl22anc 838 1 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) = ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   class class class wbr 5110  โ€˜cfv 6501  (class class class)co 7362  1c1 11059   ยท cmul 11063  2c2 12215  โ„•0cn0 12420  โ†‘cexp 13974   โˆฅ cdvds 16143   gcd cgcd 16381  Basecbs 17090  +gcplusg 17140  Grpcgrp 18755  odcod 19313  Abelcabl 19570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-dvds 16144  df-gcd 16382  df-0g 17330  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-od 19317  df-cmn 19571  df-abl 19572
This theorem is referenced by:  gexexlem  19637
  Copyright terms: Public domain W3C validator