MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Structured version   Visualization version   GIF version

Theorem odadd 19479
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Abel)
2 ablgrp 19419 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Grp)
4 simpl2 1190 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐴𝑋)
5 simpl3 1191 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐵𝑋)
6 odadd1.2 . . . . 5 𝑋 = (Base‘𝐺)
7 odadd1.3 . . . . 5 + = (+g𝐺)
86, 7grpcl 18613 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
93, 4, 5, 8syl3anc 1369 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝐴 + 𝐵) ∈ 𝑋)
10 odadd1.1 . . . 4 𝑂 = (od‘𝐺)
116, 10odcl 19172 . . 3 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
129, 11syl 17 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
136, 10odcl 19172 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
144, 13syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐴) ∈ ℕ0)
156, 10odcl 19172 . . . 4 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
165, 15syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐵) ∈ ℕ0)
1714, 16nn0mulcld 12326 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0)
18 simpr 484 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) gcd (𝑂𝐵)) = 1)
1918oveq2d 7311 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · 1))
2012nn0cnd 12323 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2120mulid1d 11020 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · 1) = (𝑂‘(𝐴 + 𝐵)))
2219, 21eqtrd 2773 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂‘(𝐴 + 𝐵)))
2310, 6, 7odadd1 19477 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2423adantr 480 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2522, 24eqbrtrrd 5101 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2610, 6, 7odadd2 19478 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2726adantr 480 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2818oveq1d 7310 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (1↑2))
29 sq1 13940 . . . . . 6 (1↑2) = 1
3028, 29eqtrdi 2789 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 1)
3130oveq2d 7311 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 1))
3231, 21eqtrd 2773 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = (𝑂‘(𝐴 + 𝐵)))
3327, 32breqtrd 5103 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))
34 dvdseq 16051 . 2 ((((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0) ∧ ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ∧ ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
3512, 17, 25, 33, 34syl22anc 835 1 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101   class class class wbr 5077  cfv 6447  (class class class)co 7295  1c1 10900   · cmul 10904  2c2 12056  0cn0 12261  cexp 13810  cdvds 15991   gcd cgcd 16229  Basecbs 16940  +gcplusg 16990  Grpcgrp 18605  odcod 19160  Abelcabl 19415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-sup 9229  df-inf 9230  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-fz 13268  df-fzo 13411  df-fl 13540  df-mod 13618  df-seq 13750  df-exp 13811  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-dvds 15992  df-gcd 16230  df-0g 17180  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-grp 18608  df-minusg 18609  df-sbg 18610  df-mulg 18729  df-od 19164  df-cmn 19416  df-abl 19417
This theorem is referenced by:  gexexlem  19481
  Copyright terms: Public domain W3C validator