MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Structured version   Visualization version   GIF version

Theorem odadd 19841
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 1191 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Abel)
2 ablgrp 19776 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Grp)
4 simpl2 1192 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐴𝑋)
5 simpl3 1193 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐵𝑋)
6 odadd1.2 . . . . 5 𝑋 = (Base‘𝐺)
7 odadd1.3 . . . . 5 + = (+g𝐺)
86, 7grpcl 18933 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
93, 4, 5, 8syl3anc 1372 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝐴 + 𝐵) ∈ 𝑋)
10 odadd1.1 . . . 4 𝑂 = (od‘𝐺)
116, 10odcl 19527 . . 3 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
129, 11syl 17 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
136, 10odcl 19527 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
144, 13syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐴) ∈ ℕ0)
156, 10odcl 19527 . . . 4 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
165, 15syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐵) ∈ ℕ0)
1714, 16nn0mulcld 12576 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0)
18 simpr 484 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) gcd (𝑂𝐵)) = 1)
1918oveq2d 7430 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · 1))
2012nn0cnd 12573 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2120mulridd 11261 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · 1) = (𝑂‘(𝐴 + 𝐵)))
2219, 21eqtrd 2769 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂‘(𝐴 + 𝐵)))
2310, 6, 7odadd1 19839 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2423adantr 480 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2522, 24eqbrtrrd 5149 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2610, 6, 7odadd2 19840 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2726adantr 480 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2818oveq1d 7429 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (1↑2))
29 sq1 14217 . . . . . 6 (1↑2) = 1
3028, 29eqtrdi 2785 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 1)
3130oveq2d 7430 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 1))
3231, 21eqtrd 2769 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = (𝑂‘(𝐴 + 𝐵)))
3327, 32breqtrd 5151 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))
34 dvdseq 16334 . 2 ((((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0) ∧ ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ∧ ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
3512, 17, 25, 33, 34syl22anc 838 1 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5125  cfv 6542  (class class class)co 7414  1c1 11139   · cmul 11143  2c2 12304  0cn0 12510  cexp 14085  cdvds 16273   gcd cgcd 16514  Basecbs 17230  +gcplusg 17277  Grpcgrp 18925  odcod 19515  Abelcabl 19772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-fz 13531  df-fzo 13678  df-fl 13815  df-mod 13893  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-dvds 16274  df-gcd 16515  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-minusg 18929  df-sbg 18930  df-mulg 19060  df-od 19519  df-cmn 19773  df-abl 19774
This theorem is referenced by:  gexexlem  19843
  Copyright terms: Public domain W3C validator