MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Structured version   Visualization version   GIF version

Theorem odadd 19766
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 ๐‘‚ = (odโ€˜๐บ)
odadd1.2 ๐‘‹ = (Baseโ€˜๐บ)
odadd1.3 + = (+gโ€˜๐บ)
Assertion
Ref Expression
odadd (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) = ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 1188 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐บ โˆˆ Abel)
2 ablgrp 19701 . . . . 5 (๐บ โˆˆ Abel โ†’ ๐บ โˆˆ Grp)
31, 2syl 17 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐บ โˆˆ Grp)
4 simpl2 1189 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐ด โˆˆ ๐‘‹)
5 simpl3 1190 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ๐ต โˆˆ ๐‘‹)
6 odadd1.2 . . . . 5 ๐‘‹ = (Baseโ€˜๐บ)
7 odadd1.3 . . . . 5 + = (+gโ€˜๐บ)
86, 7grpcl 18867 . . . 4 ((๐บ โˆˆ Grp โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ (๐ด + ๐ต) โˆˆ ๐‘‹)
93, 4, 5, 8syl3anc 1368 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐ด + ๐ต) โˆˆ ๐‘‹)
10 odadd1.1 . . . 4 ๐‘‚ = (odโ€˜๐บ)
116, 10odcl 19452 . . 3 ((๐ด + ๐ต) โˆˆ ๐‘‹ โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„•0)
129, 11syl 17 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„•0)
136, 10odcl 19452 . . . 4 (๐ด โˆˆ ๐‘‹ โ†’ (๐‘‚โ€˜๐ด) โˆˆ โ„•0)
144, 13syl 17 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜๐ด) โˆˆ โ„•0)
156, 10odcl 19452 . . . 4 (๐ต โˆˆ ๐‘‹ โ†’ (๐‘‚โ€˜๐ต) โˆˆ โ„•0)
165, 15syl 17 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜๐ต) โˆˆ โ„•0)
1714, 16nn0mulcld 12536 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆˆ โ„•0)
18 simpr 484 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1)
1918oveq2d 7418 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) = ((๐‘‚โ€˜(๐ด + ๐ต)) ยท 1))
2012nn0cnd 12533 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„‚)
2120mulridd 11230 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท 1) = (๐‘‚โ€˜(๐ด + ๐ต)))
2219, 21eqtrd 2764 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) = (๐‘‚โ€˜(๐ด + ๐ต)))
2310, 6, 7odadd1 19764 . . . 4 ((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
2423adantr 480 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
2522, 24eqbrtrrd 5163 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
2610, 6, 7odadd2 19765 . . . 4 ((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)))
2726adantr 480 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)))
2818oveq1d 7417 . . . . . 6 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2) = (1โ†‘2))
29 sq1 14160 . . . . . 6 (1โ†‘2) = 1
3028, 29eqtrdi 2780 . . . . 5 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2) = 1)
3130oveq2d 7418 . . . 4 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)) = ((๐‘‚โ€˜(๐ด + ๐ต)) ยท 1))
3231, 21eqtrd 2764 . . 3 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜(๐ด + ๐ต)) ยท (((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต))โ†‘2)) = (๐‘‚โ€˜(๐ด + ๐ต)))
3327, 32breqtrd 5165 . 2 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ (๐‘‚โ€˜(๐ด + ๐ต)))
34 dvdseq 16260 . 2 ((((๐‘‚โ€˜(๐ด + ๐ต)) โˆˆ โ„•0 โˆง ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆˆ โ„•0) โˆง ((๐‘‚โ€˜(๐ด + ๐ต)) โˆฅ ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆง ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)) โˆฅ (๐‘‚โ€˜(๐ด + ๐ต)))) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) = ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
3512, 17, 25, 33, 34syl22anc 836 1 (((๐บ โˆˆ Abel โˆง ๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โˆง ((๐‘‚โ€˜๐ด) gcd (๐‘‚โ€˜๐ต)) = 1) โ†’ (๐‘‚โ€˜(๐ด + ๐ต)) = ((๐‘‚โ€˜๐ด) ยท (๐‘‚โ€˜๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   class class class wbr 5139  โ€˜cfv 6534  (class class class)co 7402  1c1 11108   ยท cmul 11112  2c2 12266  โ„•0cn0 12471  โ†‘cexp 14028   โˆฅ cdvds 16200   gcd cgcd 16438  Basecbs 17149  +gcplusg 17202  Grpcgrp 18859  odcod 19440  Abelcabl 19697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12976  df-fz 13486  df-fzo 13629  df-fl 13758  df-mod 13836  df-seq 13968  df-exp 14029  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16201  df-gcd 16439  df-0g 17392  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-grp 18862  df-minusg 18863  df-sbg 18864  df-mulg 18992  df-od 19444  df-cmn 19698  df-abl 19699
This theorem is referenced by:  gexexlem  19768
  Copyright terms: Public domain W3C validator