Proof of Theorem odadd
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1191 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐺 ∈ Abel) |
| 2 | | ablgrp 19776 |
. . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐺 ∈ Grp) |
| 4 | | simpl2 1192 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐴 ∈ 𝑋) |
| 5 | | simpl3 1193 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → 𝐵 ∈ 𝑋) |
| 6 | | odadd1.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
| 7 | | odadd1.3 |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 8 | 6, 7 | grpcl 18933 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 + 𝐵) ∈ 𝑋) |
| 9 | 3, 4, 5, 8 | syl3anc 1372 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝐴 + 𝐵) ∈ 𝑋) |
| 10 | | odadd1.1 |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
| 11 | 6, 10 | odcl 19527 |
. . 3
⊢ ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈
ℕ0) |
| 12 | 9, 11 | syl 17 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈
ℕ0) |
| 13 | 6, 10 | odcl 19527 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
| 14 | 4, 13 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘𝐴) ∈
ℕ0) |
| 15 | 6, 10 | odcl 19527 |
. . . 4
⊢ (𝐵 ∈ 𝑋 → (𝑂‘𝐵) ∈
ℕ0) |
| 16 | 5, 15 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘𝐵) ∈
ℕ0) |
| 17 | 14, 16 | nn0mulcld 12576 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∈
ℕ0) |
| 18 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) |
| 19 | 18 | oveq2d 7430 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · 1)) |
| 20 | 12 | nn0cnd 12573 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ) |
| 21 | 20 | mulridd 11261 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · 1) = (𝑂‘(𝐴 + 𝐵))) |
| 22 | 19, 21 | eqtrd 2769 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) = (𝑂‘(𝐴 + 𝐵))) |
| 23 | 10, 6, 7 | odadd1 19839 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) |
| 24 | 23 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) |
| 25 | 22, 24 | eqbrtrrd 5149 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) |
| 26 | 10, 6, 7 | odadd2 19840 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) |
| 27 | 26 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) |
| 28 | 18 | oveq1d 7429 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2) = (1↑2)) |
| 29 | | sq1 14217 |
. . . . . 6
⊢
(1↑2) = 1 |
| 30 | 28, 29 | eqtrdi 2785 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2) = 1) |
| 31 | 30 | oveq2d 7430 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 1)) |
| 32 | 31, 21 | eqtrd 2769 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2)) = (𝑂‘(𝐴 + 𝐵))) |
| 33 | 27, 32 | breqtrd 5151 |
. 2
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ (𝑂‘(𝐴 + 𝐵))) |
| 34 | | dvdseq 16334 |
. 2
⊢ ((((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ ((𝑂‘𝐴) · (𝑂‘𝐵)) ∈ ℕ0) ∧ ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵)) ∧ ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) |
| 35 | 12, 17, 25, 33, 34 | syl22anc 838 |
1
⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) |