Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Visualization version   GIF version

Theorem rmxycomplete 42890
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝑛,𝑌

Proof of Theorem rmxycomplete
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 42880 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
213ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3 pellfund14b 42872 . . 3 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
42, 3syl 17 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
5 nn0re 12411 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
653ad2ant2 1134 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℝ)
7 rmspecpos 42889 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpsqrtcld 15337 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
98rpred 12955 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
1093ad2ant1 1133 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
11 zre 12493 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
12113ad2ant3 1135 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℝ)
1310, 12remulcld 11164 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · 𝑌) ∈ ℝ)
146, 13readdcld 11163 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ)
1514biantrurd 532 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
16 simpl2 1193 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑋 ∈ ℕ0)
17 simpl3 1194 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑌 ∈ ℤ)
18 eqidd 2730 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
19 simpr 484 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
20 oveq1 7360 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)))
2120eqeq2d 2740 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦))))
22 oveq1 7360 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
2322oveq1d 7368 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
2423eqeq1d 2731 . . . . . . . 8 (𝑥 = 𝑋 → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
2521, 24anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
26 oveq2 7361 . . . . . . . . . 10 (𝑦 = 𝑌 → ((√‘((𝐴↑2) − 1)) · 𝑦) = ((√‘((𝐴↑2) − 1)) · 𝑌))
2726oveq2d 7369 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
2827eqeq2d 2740 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌))))
29 oveq1 7360 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦↑2) = (𝑌↑2))
3029oveq2d 7369 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · (𝑌↑2)))
3130oveq2d 7369 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
3231eqeq1d 2731 . . . . . . . 8 (𝑦 = 𝑌 → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
3328, 32anbi12d 632 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)))
3425, 33rspc2ev 3592 . . . . . 6 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ ∧ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3516, 17, 18, 19, 34syl112anc 1376 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3635ex 412 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
37 rmspecsqrtnq 42879 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
38373ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3938adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
40 nn0ssq 12876 . . . . . . . . . . 11 0 ⊆ ℚ
41 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℕ0)
4240, 41sselid 3935 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℚ)
4342adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑋 ∈ ℚ)
44 zq 12873 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℚ)
45443ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℚ)
4645adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑌 ∈ ℚ)
4740sseli 3933 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℚ)
4847ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑥 ∈ ℚ)
49 zq 12873 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
5049ad2antll 729 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑦 ∈ ℚ)
51 qirropth 42881 . . . . . . . . 9 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5239, 43, 46, 48, 50, 51syl122anc 1381 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5352biimpd 229 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) → (𝑋 = 𝑥𝑌 = 𝑦)))
5453anim1d 611 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
55 oveq1 7360 . . . . . . . . . 10 (𝑋 = 𝑥 → (𝑋↑2) = (𝑥↑2))
56 oveq1 7360 . . . . . . . . . . 11 (𝑌 = 𝑦 → (𝑌↑2) = (𝑦↑2))
5756oveq2d 7369 . . . . . . . . . 10 (𝑌 = 𝑦 → (((𝐴↑2) − 1) · (𝑌↑2)) = (((𝐴↑2) − 1) · (𝑦↑2)))
5855, 57oveqan12d 7372 . . . . . . . . 9 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
5958eqcomd 2735 . . . . . . . 8 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
6059eqeq1d 2731 . . . . . . 7 ((𝑋 = 𝑥𝑌 = 𝑦) → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6160biimpa 476 . . . . . 6 (((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
6254, 61syl6 35 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6362rexlimdvva 3186 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6436, 63impbid 212 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
65 elpell14qr 42822 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
662, 65syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
6715, 64, 663bitr4d 311 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1))))
6838adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
6942adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ ℚ)
7045adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ ℚ)
71 frmx 42886 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
7271a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
73 simpl1 1192 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
74 simpr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
7572, 73, 74fovcdmd 7525 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℕ0)
7640, 75sselid 3935 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℚ)
77 zssq 12875 . . . . . 6 ℤ ⊆ ℚ
78 frmy 42887 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7978a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
8079, 73, 74fovcdmd 7525 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℤ)
8177, 80sselid 3935 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℚ)
82 qirropth 42881 . . . . 5 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ ((𝐴 Xrm 𝑛) ∈ ℚ ∧ (𝐴 Yrm 𝑛) ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
8368, 69, 70, 76, 81, 82syl122anc 1381 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
84 rmxyval 42888 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
85843ad2antl1 1186 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
86 rmspecfund 42882 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
87863ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8887adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8988oveq1d 7368 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((PellFund‘((𝐴↑2) − 1))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
9085, 89eqtr4d 2767 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((PellFund‘((𝐴↑2) − 1))↑𝑛))
9190eqeq2d 2740 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9283, 91bitr3d 281 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9392rexbidva 3151 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
944, 67, 933bitr4d 311 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cdif 3902   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cq 12867  cexp 13986  csqrt 15158  NNcsquarenn 42809  Pell14QRcpell14qr 42812  PellFundcpellfund 42813   Xrm crmx 42873   Yrm crmy 42874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-numer 16664  df-denom 16665  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-squarenn 42814  df-pell1qr 42815  df-pell14qr 42816  df-pell1234qr 42817  df-pellfund 42818  df-rmx 42875  df-rmy 42876
This theorem is referenced by:  rmxynorm  42891  jm2.27b  42979
  Copyright terms: Public domain W3C validator