Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Visualization version   GIF version

Theorem rmxycomplete 42913
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝑛,𝑌

Proof of Theorem rmxycomplete
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 42902 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
213ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3 pellfund14b 42894 . . 3 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
42, 3syl 17 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
5 nn0re 12458 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
653ad2ant2 1134 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℝ)
7 rmspecpos 42912 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpsqrtcld 15385 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
98rpred 13002 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
1093ad2ant1 1133 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
11 zre 12540 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
12113ad2ant3 1135 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℝ)
1310, 12remulcld 11211 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · 𝑌) ∈ ℝ)
146, 13readdcld 11210 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ)
1514biantrurd 532 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
16 simpl2 1193 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑋 ∈ ℕ0)
17 simpl3 1194 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑌 ∈ ℤ)
18 eqidd 2731 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
19 simpr 484 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
20 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)))
2120eqeq2d 2741 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦))))
22 oveq1 7397 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
2322oveq1d 7405 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
2423eqeq1d 2732 . . . . . . . 8 (𝑥 = 𝑋 → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
2521, 24anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
26 oveq2 7398 . . . . . . . . . 10 (𝑦 = 𝑌 → ((√‘((𝐴↑2) − 1)) · 𝑦) = ((√‘((𝐴↑2) − 1)) · 𝑌))
2726oveq2d 7406 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
2827eqeq2d 2741 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌))))
29 oveq1 7397 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦↑2) = (𝑌↑2))
3029oveq2d 7406 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · (𝑌↑2)))
3130oveq2d 7406 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
3231eqeq1d 2732 . . . . . . . 8 (𝑦 = 𝑌 → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
3328, 32anbi12d 632 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)))
3425, 33rspc2ev 3604 . . . . . 6 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ ∧ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3516, 17, 18, 19, 34syl112anc 1376 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3635ex 412 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
37 rmspecsqrtnq 42901 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
38373ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3938adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
40 nn0ssq 12923 . . . . . . . . . . 11 0 ⊆ ℚ
41 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℕ0)
4240, 41sselid 3947 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℚ)
4342adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑋 ∈ ℚ)
44 zq 12920 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℚ)
45443ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℚ)
4645adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑌 ∈ ℚ)
4740sseli 3945 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℚ)
4847ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑥 ∈ ℚ)
49 zq 12920 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
5049ad2antll 729 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑦 ∈ ℚ)
51 qirropth 42903 . . . . . . . . 9 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5239, 43, 46, 48, 50, 51syl122anc 1381 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5352biimpd 229 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) → (𝑋 = 𝑥𝑌 = 𝑦)))
5453anim1d 611 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
55 oveq1 7397 . . . . . . . . . 10 (𝑋 = 𝑥 → (𝑋↑2) = (𝑥↑2))
56 oveq1 7397 . . . . . . . . . . 11 (𝑌 = 𝑦 → (𝑌↑2) = (𝑦↑2))
5756oveq2d 7406 . . . . . . . . . 10 (𝑌 = 𝑦 → (((𝐴↑2) − 1) · (𝑌↑2)) = (((𝐴↑2) − 1) · (𝑦↑2)))
5855, 57oveqan12d 7409 . . . . . . . . 9 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
5958eqcomd 2736 . . . . . . . 8 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
6059eqeq1d 2732 . . . . . . 7 ((𝑋 = 𝑥𝑌 = 𝑦) → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6160biimpa 476 . . . . . 6 (((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
6254, 61syl6 35 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6362rexlimdvva 3195 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6436, 63impbid 212 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
65 elpell14qr 42844 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
662, 65syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
6715, 64, 663bitr4d 311 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1))))
6838adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
6942adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ ℚ)
7045adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ ℚ)
71 frmx 42909 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
7271a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
73 simpl1 1192 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
74 simpr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
7572, 73, 74fovcdmd 7564 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℕ0)
7640, 75sselid 3947 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℚ)
77 zssq 12922 . . . . . 6 ℤ ⊆ ℚ
78 frmy 42910 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7978a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
8079, 73, 74fovcdmd 7564 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℤ)
8177, 80sselid 3947 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℚ)
82 qirropth 42903 . . . . 5 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ ((𝐴 Xrm 𝑛) ∈ ℚ ∧ (𝐴 Yrm 𝑛) ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
8368, 69, 70, 76, 81, 82syl122anc 1381 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
84 rmxyval 42911 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
85843ad2antl1 1186 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
86 rmspecfund 42904 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
87863ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8887adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8988oveq1d 7405 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((PellFund‘((𝐴↑2) − 1))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
9085, 89eqtr4d 2768 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((PellFund‘((𝐴↑2) − 1))↑𝑛))
9190eqeq2d 2741 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9283, 91bitr3d 281 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9392rexbidva 3156 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
944, 67, 933bitr4d 311 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cdif 3914   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  cq 12914  cexp 14033  csqrt 15206  NNcsquarenn 42831  Pell14QRcpell14qr 42834  PellFundcpellfund 42835   Xrm crmx 42895   Yrm crmy 42896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-squarenn 42836  df-pell1qr 42837  df-pell14qr 42838  df-pell1234qr 42839  df-pellfund 42840  df-rmx 42897  df-rmy 42898
This theorem is referenced by:  rmxynorm  42914  jm2.27b  43002
  Copyright terms: Public domain W3C validator