Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Visualization version   GIF version

Theorem rmxycomplete 42907
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝑛,𝑌

Proof of Theorem rmxycomplete
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 42896 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
213ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3 pellfund14b 42888 . . 3 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
42, 3syl 17 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
5 nn0re 12518 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
653ad2ant2 1134 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℝ)
7 rmspecpos 42906 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpsqrtcld 15433 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
98rpred 13059 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
1093ad2ant1 1133 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
11 zre 12600 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
12113ad2ant3 1135 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℝ)
1310, 12remulcld 11273 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · 𝑌) ∈ ℝ)
146, 13readdcld 11272 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ)
1514biantrurd 532 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
16 simpl2 1192 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑋 ∈ ℕ0)
17 simpl3 1193 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑌 ∈ ℤ)
18 eqidd 2735 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
19 simpr 484 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
20 oveq1 7420 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)))
2120eqeq2d 2745 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦))))
22 oveq1 7420 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
2322oveq1d 7428 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
2423eqeq1d 2736 . . . . . . . 8 (𝑥 = 𝑋 → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
2521, 24anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
26 oveq2 7421 . . . . . . . . . 10 (𝑦 = 𝑌 → ((√‘((𝐴↑2) − 1)) · 𝑦) = ((√‘((𝐴↑2) − 1)) · 𝑌))
2726oveq2d 7429 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
2827eqeq2d 2745 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌))))
29 oveq1 7420 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦↑2) = (𝑌↑2))
3029oveq2d 7429 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · (𝑌↑2)))
3130oveq2d 7429 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
3231eqeq1d 2736 . . . . . . . 8 (𝑦 = 𝑌 → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
3328, 32anbi12d 632 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)))
3425, 33rspc2ev 3618 . . . . . 6 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ ∧ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3516, 17, 18, 19, 34syl112anc 1375 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3635ex 412 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
37 rmspecsqrtnq 42895 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
38373ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3938adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
40 nn0ssq 12981 . . . . . . . . . . 11 0 ⊆ ℚ
41 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℕ0)
4240, 41sselid 3961 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℚ)
4342adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑋 ∈ ℚ)
44 zq 12978 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℚ)
45443ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℚ)
4645adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑌 ∈ ℚ)
4740sseli 3959 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℚ)
4847ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑥 ∈ ℚ)
49 zq 12978 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
5049ad2antll 729 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑦 ∈ ℚ)
51 qirropth 42897 . . . . . . . . 9 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5239, 43, 46, 48, 50, 51syl122anc 1380 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5352biimpd 229 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) → (𝑋 = 𝑥𝑌 = 𝑦)))
5453anim1d 611 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
55 oveq1 7420 . . . . . . . . . 10 (𝑋 = 𝑥 → (𝑋↑2) = (𝑥↑2))
56 oveq1 7420 . . . . . . . . . . 11 (𝑌 = 𝑦 → (𝑌↑2) = (𝑦↑2))
5756oveq2d 7429 . . . . . . . . . 10 (𝑌 = 𝑦 → (((𝐴↑2) − 1) · (𝑌↑2)) = (((𝐴↑2) − 1) · (𝑦↑2)))
5855, 57oveqan12d 7432 . . . . . . . . 9 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
5958eqcomd 2740 . . . . . . . 8 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
6059eqeq1d 2736 . . . . . . 7 ((𝑋 = 𝑥𝑌 = 𝑦) → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6160biimpa 476 . . . . . 6 (((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
6254, 61syl6 35 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6362rexlimdvva 3200 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6436, 63impbid 212 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
65 elpell14qr 42838 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
662, 65syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
6715, 64, 663bitr4d 311 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1))))
6838adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
6942adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ ℚ)
7045adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ ℚ)
71 frmx 42903 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
7271a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
73 simpl1 1191 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
74 simpr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
7572, 73, 74fovcdmd 7587 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℕ0)
7640, 75sselid 3961 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℚ)
77 zssq 12980 . . . . . 6 ℤ ⊆ ℚ
78 frmy 42904 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7978a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
8079, 73, 74fovcdmd 7587 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℤ)
8177, 80sselid 3961 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℚ)
82 qirropth 42897 . . . . 5 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ ((𝐴 Xrm 𝑛) ∈ ℚ ∧ (𝐴 Yrm 𝑛) ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
8368, 69, 70, 76, 81, 82syl122anc 1380 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
84 rmxyval 42905 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
85843ad2antl1 1185 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
86 rmspecfund 42898 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
87863ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8887adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8988oveq1d 7428 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((PellFund‘((𝐴↑2) − 1))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
9085, 89eqtr4d 2772 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((PellFund‘((𝐴↑2) − 1))↑𝑛))
9190eqeq2d 2745 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9283, 91bitr3d 281 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9392rexbidva 3164 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
944, 67, 933bitr4d 311 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  cdif 3928   × cxp 5663  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  cn 12248  2c2 12303  0cn0 12509  cz 12596  cuz 12860  cq 12972  cexp 14084  csqrt 15255  NNcsquarenn 42825  Pell14QRcpell14qr 42828  PellFundcpellfund 42829   Xrm crmx 42889   Yrm crmy 42890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14296  df-bc 14325  df-hash 14353  df-shft 15089  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-ef 16086  df-sin 16088  df-cos 16089  df-pi 16091  df-dvds 16274  df-gcd 16515  df-numer 16755  df-denom 16756  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-lp 23091  df-perf 23092  df-cn 23182  df-cnp 23183  df-haus 23270  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-limc 25838  df-dv 25839  df-log 26535  df-squarenn 42830  df-pell1qr 42831  df-pell14qr 42832  df-pell1234qr 42833  df-pellfund 42834  df-rmx 42891  df-rmy 42892
This theorem is referenced by:  rmxynorm  42908  jm2.27b  42996
  Copyright terms: Public domain W3C validator