Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Visualization version   GIF version

Theorem rmxycomplete 40311
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝑛,𝑌

Proof of Theorem rmxycomplete
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 40301 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
213ad2ant1 1134 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3 pellfund14b 40293 . . 3 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
42, 3syl 17 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
5 nn0re 11985 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
653ad2ant2 1135 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℝ)
7 rmspecpos 40310 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpsqrtcld 14861 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
98rpred 12514 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
1093ad2ant1 1134 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
11 zre 12066 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
12113ad2ant3 1136 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℝ)
1310, 12remulcld 10749 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · 𝑌) ∈ ℝ)
146, 13readdcld 10748 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ)
1514biantrurd 536 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
16 simpl2 1193 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑋 ∈ ℕ0)
17 simpl3 1194 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑌 ∈ ℤ)
18 eqidd 2739 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
19 simpr 488 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
20 oveq1 7177 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)))
2120eqeq2d 2749 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦))))
22 oveq1 7177 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
2322oveq1d 7185 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
2423eqeq1d 2740 . . . . . . . 8 (𝑥 = 𝑋 → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
2521, 24anbi12d 634 . . . . . . 7 (𝑥 = 𝑋 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
26 oveq2 7178 . . . . . . . . . 10 (𝑦 = 𝑌 → ((√‘((𝐴↑2) − 1)) · 𝑦) = ((√‘((𝐴↑2) − 1)) · 𝑌))
2726oveq2d 7186 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
2827eqeq2d 2749 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌))))
29 oveq1 7177 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦↑2) = (𝑌↑2))
3029oveq2d 7186 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · (𝑌↑2)))
3130oveq2d 7186 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
3231eqeq1d 2740 . . . . . . . 8 (𝑦 = 𝑌 → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
3328, 32anbi12d 634 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)))
3425, 33rspc2ev 3538 . . . . . 6 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ ∧ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3516, 17, 18, 19, 34syl112anc 1375 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3635ex 416 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
37 rmspecsqrtnq 40300 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
38373ad2ant1 1134 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3938adantr 484 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
40 nn0ssq 12439 . . . . . . . . . . 11 0 ⊆ ℚ
41 simp2 1138 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℕ0)
4240, 41sseldi 3875 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℚ)
4342adantr 484 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑋 ∈ ℚ)
44 zq 12436 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℚ)
45443ad2ant3 1136 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℚ)
4645adantr 484 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑌 ∈ ℚ)
4740sseli 3873 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℚ)
4847ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑥 ∈ ℚ)
49 zq 12436 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
5049ad2antll 729 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑦 ∈ ℚ)
51 qirropth 40302 . . . . . . . . 9 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5239, 43, 46, 48, 50, 51syl122anc 1380 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5352biimpd 232 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) → (𝑋 = 𝑥𝑌 = 𝑦)))
5453anim1d 614 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
55 oveq1 7177 . . . . . . . . . 10 (𝑋 = 𝑥 → (𝑋↑2) = (𝑥↑2))
56 oveq1 7177 . . . . . . . . . . 11 (𝑌 = 𝑦 → (𝑌↑2) = (𝑦↑2))
5756oveq2d 7186 . . . . . . . . . 10 (𝑌 = 𝑦 → (((𝐴↑2) − 1) · (𝑌↑2)) = (((𝐴↑2) − 1) · (𝑦↑2)))
5855, 57oveqan12d 7189 . . . . . . . . 9 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
5958eqcomd 2744 . . . . . . . 8 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
6059eqeq1d 2740 . . . . . . 7 ((𝑋 = 𝑥𝑌 = 𝑦) → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6160biimpa 480 . . . . . 6 (((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
6254, 61syl6 35 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6362rexlimdvva 3204 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6436, 63impbid 215 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
65 elpell14qr 40243 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
662, 65syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
6715, 64, 663bitr4d 314 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1))))
6838adantr 484 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
6942adantr 484 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ ℚ)
7045adantr 484 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ ℚ)
71 frmx 40307 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
7271a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
73 simpl1 1192 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
74 simpr 488 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
7572, 73, 74fovrnd 7336 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℕ0)
7640, 75sseldi 3875 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℚ)
77 zssq 12438 . . . . . 6 ℤ ⊆ ℚ
78 frmy 40308 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7978a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
8079, 73, 74fovrnd 7336 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℤ)
8177, 80sseldi 3875 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℚ)
82 qirropth 40302 . . . . 5 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ ((𝐴 Xrm 𝑛) ∈ ℚ ∧ (𝐴 Yrm 𝑛) ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
8368, 69, 70, 76, 81, 82syl122anc 1380 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
84 rmxyval 40309 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
85843ad2antl1 1186 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
86 rmspecfund 40303 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
87863ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8887adantr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8988oveq1d 7185 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((PellFund‘((𝐴↑2) − 1))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
9085, 89eqtr4d 2776 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((PellFund‘((𝐴↑2) − 1))↑𝑛))
9190eqeq2d 2749 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9283, 91bitr3d 284 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9392rexbidva 3206 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
944, 67, 933bitr4d 314 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3054  cdif 3840   × cxp 5523  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  1c1 10616   + caddc 10618   · cmul 10620  cmin 10948  cn 11716  2c2 11771  0cn0 11976  cz 12062  cuz 12324  cq 12430  cexp 13521  csqrt 14682  NNcsquarenn 40230  Pell14QRcpell14qr 40233  PellFundcpellfund 40234   Xrm crmx 40294   Yrm crmy 40295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-oadd 8135  df-omul 8136  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-acn 9444  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-xnn0 12049  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-sin 15515  df-cos 15516  df-pi 15518  df-dvds 15700  df-gcd 15938  df-numer 16175  df-denom 16176  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619  df-log 25300  df-squarenn 40235  df-pell1qr 40236  df-pell14qr 40237  df-pell1234qr 40238  df-pellfund 40239  df-rmx 40296  df-rmy 40297
This theorem is referenced by:  rmxynorm  40312  jm2.27b  40400
  Copyright terms: Public domain W3C validator