Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvbdfbdioo | Structured version Visualization version GIF version |
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvbdfbdioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvbdfbdioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvbdfbdioo.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
dvbdfbdioo.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
dvbdfbdioo.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
dvbdfbdioo.dvbd | ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) |
Ref | Expression |
---|---|
dvbdfbdioo | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvbdfbdioo.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
2 | dvbdfbdioo.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 11071 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
4 | dvbdfbdioo.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 11071 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 2, 4 | readdcld 11050 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 12266 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ) |
8 | dvbdfbdioo.altb | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | avglt1 12257 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) | |
10 | 2, 4, 9 | syl2anc 585 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) |
11 | 8, 10 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < ((𝐴 + 𝐵) / 2)) |
12 | avglt2 12258 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) | |
13 | 2, 4, 12 | syl2anc 585 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) |
14 | 8, 13 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵) |
15 | 3, 5, 7, 11, 14 | eliood 43085 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
16 | 1, 15 | ffvelcdmd 6994 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ) |
17 | 16 | recnd 11049 | . . . . . 6 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
18 | 17 | abscld 15193 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
19 | 18 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
20 | simplr 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ) | |
21 | 4 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ) |
22 | 2 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ) |
23 | 21, 22 | resubcld 11449 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵 − 𝐴) ∈ ℝ) |
24 | 20, 23 | remulcld 11051 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵 − 𝐴)) ∈ ℝ) |
25 | 19, 24 | readdcld 11050 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ) |
26 | 8 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵) |
27 | 1 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
28 | dvbdfbdioo.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
29 | 28 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
30 | 2fveq3 6809 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦))) | |
31 | 30 | breq1d 5091 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)) |
32 | 31 | cbvralvw 3222 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
33 | 32 | biimpi 215 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
34 | 33 | adantl 483 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
35 | eqid 2736 | . . . 4 ⊢ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) | |
36 | 22, 21, 26, 27, 29, 20, 34, 35 | dvbdfbdioolem2 43519 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) |
37 | 2fveq3 6809 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝑦))) | |
38 | 37 | breq1d 5091 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑏)) |
39 | 38 | cbvralvw 3222 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏) |
40 | breq2 5085 | . . . . . 6 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → ((abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) | |
41 | 40 | ralbidv 3171 | . . . . 5 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
42 | 39, 41 | bitrid 283 | . . . 4 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
43 | 42 | rspcev 3566 | . . 3 ⊢ ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
44 | 25, 36, 43 | syl2anc 585 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
45 | dvbdfbdioo.dvbd | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) | |
46 | 44, 45 | r19.29a 3156 | 1 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 class class class wbr 5081 dom cdm 5600 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 + caddc 10920 · cmul 10922 < clt 11055 ≤ cle 11056 − cmin 11251 / cdiv 11678 2c2 12074 (,)cioo 13125 abscabs 14990 D cdv 25072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-cmp 22583 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-xms 23518 df-ms 23519 df-tms 23520 df-cncf 24086 df-limc 25075 df-dv 25076 |
This theorem is referenced by: ioodvbdlimc1lem2 43522 ioodvbdlimc2lem 43524 |
Copyright terms: Public domain | W3C validator |