Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioo Structured version   Visualization version   GIF version

Theorem dvbdfbdioo 43520
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioo.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioo.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioo.altb (𝜑𝐴 < 𝐵)
dvbdfbdioo.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioo.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioo.dvbd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
Assertion
Ref Expression
dvbdfbdioo (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏,𝑥   𝐹,𝑎,𝑏,𝑥   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑏)

Proof of Theorem dvbdfbdioo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioo.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 dvbdfbdioo.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
32rexrd 11071 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
4 dvbdfbdioo.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
54rexrd 11071 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
62, 4readdcld 11050 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
76rehalfcld 12266 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
8 dvbdfbdioo.altb . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
9 avglt1 12257 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
102, 4, 9syl2anc 585 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 231 . . . . . . . . 9 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 12258 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
132, 4, 12syl2anc 585 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 231 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
153, 5, 7, 11, 14eliood 43085 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
161, 15ffvelcdmd 6994 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
1716recnd 11049 . . . . . 6 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
1817abscld 15193 . . . . 5 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
1918ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
20 simplr 767 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ)
214ad2antrr 724 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ)
222ad2antrr 724 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ)
2321, 22resubcld 11449 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵𝐴) ∈ ℝ)
2420, 23remulcld 11051 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵𝐴)) ∈ ℝ)
2519, 24readdcld 11050 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ)
268ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵)
271ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
28 dvbdfbdioo.dmdv . . . . 5 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
2928ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
30 2fveq3 6809 . . . . . . . 8 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
3130breq1d 5091 . . . . . . 7 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎))
3231cbvralvw 3222 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3332biimpi 215 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3433adantl 483 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
35 eqid 2736 . . . 4 ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))
3622, 21, 26, 27, 29, 20, 34, 35dvbdfbdioolem2 43519 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))))
37 2fveq3 6809 . . . . . . 7 (𝑥 = 𝑦 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑦)))
3837breq1d 5091 . . . . . 6 (𝑥 = 𝑦 → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ 𝑏))
3938cbvralvw 3222 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏)
40 breq2 5085 . . . . . 6 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → ((abs‘(𝐹𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4140ralbidv 3171 . . . . 5 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4239, 41bitrid 283 . . . 4 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4342rspcev 3566 . . 3 ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
4425, 36, 43syl2anc 585 . 2 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
45 dvbdfbdioo.dvbd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
4644, 45r19.29a 3156 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  wrex 3071   class class class wbr 5081  dom cdm 5600  wf 6454  cfv 6458  (class class class)co 7307  cr 10916   + caddc 10920   · cmul 10922   < clt 11055  cle 11056  cmin 11251   / cdiv 11678  2c2 12074  (,)cioo 13125  abscabs 14990   D cdv 25072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-fi 9214  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-ioo 13129  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-rest 17178  df-topn 17179  df-0g 17197  df-gsum 17198  df-topgen 17199  df-pt 17200  df-prds 17203  df-xrs 17258  df-qtop 17263  df-imas 17264  df-xps 17266  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-mulg 18746  df-cntz 18968  df-cmn 19433  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-fbas 20639  df-fg 20640  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-cld 22215  df-ntr 22216  df-cls 22217  df-nei 22294  df-lp 22332  df-perf 22333  df-cn 22423  df-cnp 22424  df-haus 22511  df-cmp 22583  df-tx 22758  df-hmeo 22951  df-fil 23042  df-fm 23134  df-flim 23135  df-flf 23136  df-xms 23518  df-ms 23519  df-tms 23520  df-cncf 24086  df-limc 25075  df-dv 25076
This theorem is referenced by:  ioodvbdlimc1lem2  43522  ioodvbdlimc2lem  43524
  Copyright terms: Public domain W3C validator