![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvbdfbdioo | Structured version Visualization version GIF version |
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvbdfbdioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvbdfbdioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvbdfbdioo.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
dvbdfbdioo.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
dvbdfbdioo.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
dvbdfbdioo.dvbd | ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) |
Ref | Expression |
---|---|
dvbdfbdioo | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvbdfbdioo.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
2 | dvbdfbdioo.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 10379 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
4 | dvbdfbdioo.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 10379 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 2, 4 | readdcld 10359 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 11566 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ) |
8 | dvbdfbdioo.altb | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | avglt1 11557 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) | |
10 | 2, 4, 9 | syl2anc 580 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) |
11 | 8, 10 | mpbid 224 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < ((𝐴 + 𝐵) / 2)) |
12 | avglt2 11558 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) | |
13 | 2, 4, 12 | syl2anc 580 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) |
14 | 8, 13 | mpbid 224 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵) |
15 | 3, 5, 7, 11, 14 | eliood 40463 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
16 | 1, 15 | ffvelrnd 6587 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ) |
17 | 16 | recnd 10358 | . . . . . 6 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
18 | 17 | abscld 14515 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
19 | 18 | ad2antrr 718 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
20 | simplr 786 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ) | |
21 | 4 | ad2antrr 718 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ) |
22 | 2 | ad2antrr 718 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ) |
23 | 21, 22 | resubcld 10751 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵 − 𝐴) ∈ ℝ) |
24 | 20, 23 | remulcld 10360 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵 − 𝐴)) ∈ ℝ) |
25 | 19, 24 | readdcld 10359 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ) |
26 | 8 | ad2antrr 718 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵) |
27 | 1 | ad2antrr 718 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
28 | dvbdfbdioo.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
29 | 28 | ad2antrr 718 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
30 | 2fveq3 6417 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦))) | |
31 | 30 | breq1d 4854 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)) |
32 | 31 | cbvralv 3355 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
33 | 32 | biimpi 208 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
34 | 33 | adantl 474 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
35 | eqid 2800 | . . . 4 ⊢ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) | |
36 | 22, 21, 26, 27, 29, 20, 34, 35 | dvbdfbdioolem2 40883 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) |
37 | 2fveq3 6417 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝑦))) | |
38 | 37 | breq1d 4854 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑏)) |
39 | 38 | cbvralv 3355 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏) |
40 | breq2 4848 | . . . . . 6 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → ((abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) | |
41 | 40 | ralbidv 3168 | . . . . 5 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
42 | 39, 41 | syl5bb 275 | . . . 4 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
43 | 42 | rspcev 3498 | . . 3 ⊢ ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
44 | 25, 36, 43 | syl2anc 580 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
45 | dvbdfbdioo.dvbd | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) | |
46 | 44, 45 | r19.29a 3260 | 1 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ∃wrex 3091 class class class wbr 4844 dom cdm 5313 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 ℝcr 10224 + caddc 10228 · cmul 10230 < clt 10364 ≤ cle 10365 − cmin 10557 / cdiv 10977 2c2 11367 (,)cioo 12423 abscabs 14314 D cdv 23967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 ax-addf 10304 ax-mulf 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-iin 4714 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 df-om 7301 df-1st 7402 df-2nd 7403 df-supp 7534 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-ixp 8150 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fsupp 8519 df-fi 8560 df-sup 8591 df-inf 8592 df-oi 8658 df-card 9052 df-cda 9279 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-q 12033 df-rp 12074 df-xneg 12192 df-xadd 12193 df-xmul 12194 df-ioo 12427 df-ico 12429 df-icc 12430 df-fz 12580 df-fzo 12720 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-starv 16281 df-sca 16282 df-vsca 16283 df-ip 16284 df-tset 16285 df-ple 16286 df-ds 16288 df-unif 16289 df-hom 16290 df-cco 16291 df-rest 16397 df-topn 16398 df-0g 16416 df-gsum 16417 df-topgen 16418 df-pt 16419 df-prds 16422 df-xrs 16476 df-qtop 16481 df-imas 16482 df-xps 16484 df-mre 16560 df-mrc 16561 df-acs 16563 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-submnd 17650 df-mulg 17856 df-cntz 18061 df-cmn 18509 df-psmet 20059 df-xmet 20060 df-met 20061 df-bl 20062 df-mopn 20063 df-fbas 20064 df-fg 20065 df-cnfld 20068 df-top 21026 df-topon 21043 df-topsp 21065 df-bases 21078 df-cld 21151 df-ntr 21152 df-cls 21153 df-nei 21230 df-lp 21268 df-perf 21269 df-cn 21359 df-cnp 21360 df-haus 21447 df-cmp 21518 df-tx 21693 df-hmeo 21886 df-fil 21977 df-fm 22069 df-flim 22070 df-flf 22071 df-xms 22452 df-ms 22453 df-tms 22454 df-cncf 23008 df-limc 23970 df-dv 23971 |
This theorem is referenced by: ioodvbdlimc1lem2 40886 ioodvbdlimc2lem 40888 |
Copyright terms: Public domain | W3C validator |