![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvbdfbdioo | Structured version Visualization version GIF version |
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvbdfbdioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvbdfbdioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvbdfbdioo.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
dvbdfbdioo.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
dvbdfbdioo.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
dvbdfbdioo.dvbd | ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) |
Ref | Expression |
---|---|
dvbdfbdioo | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvbdfbdioo.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
2 | dvbdfbdioo.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 11260 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
4 | dvbdfbdioo.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 11260 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 2, 4 | readdcld 11239 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 12455 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ) |
8 | dvbdfbdioo.altb | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | avglt1 12446 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) | |
10 | 2, 4, 9 | syl2anc 585 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) |
11 | 8, 10 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < ((𝐴 + 𝐵) / 2)) |
12 | avglt2 12447 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) | |
13 | 2, 4, 12 | syl2anc 585 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) |
14 | 8, 13 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵) |
15 | 3, 5, 7, 11, 14 | eliood 44146 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
16 | 1, 15 | ffvelcdmd 7083 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ) |
17 | 16 | recnd 11238 | . . . . . 6 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
18 | 17 | abscld 15379 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
19 | 18 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
20 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ) | |
21 | 4 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ) |
22 | 2 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ) |
23 | 21, 22 | resubcld 11638 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵 − 𝐴) ∈ ℝ) |
24 | 20, 23 | remulcld 11240 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵 − 𝐴)) ∈ ℝ) |
25 | 19, 24 | readdcld 11239 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ) |
26 | 8 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵) |
27 | 1 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
28 | dvbdfbdioo.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
29 | 28 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
30 | 2fveq3 6893 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦))) | |
31 | 30 | breq1d 5157 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)) |
32 | 31 | cbvralvw 3235 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
33 | 32 | biimpi 215 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
34 | 33 | adantl 483 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
35 | eqid 2733 | . . . 4 ⊢ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) | |
36 | 22, 21, 26, 27, 29, 20, 34, 35 | dvbdfbdioolem2 44580 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) |
37 | 2fveq3 6893 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝑦))) | |
38 | 37 | breq1d 5157 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑏)) |
39 | 38 | cbvralvw 3235 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏) |
40 | breq2 5151 | . . . . . 6 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → ((abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) | |
41 | 40 | ralbidv 3178 | . . . . 5 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
42 | 39, 41 | bitrid 283 | . . . 4 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
43 | 42 | rspcev 3612 | . . 3 ⊢ ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
44 | 25, 36, 43 | syl2anc 585 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
45 | dvbdfbdioo.dvbd | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) | |
46 | 44, 45 | r19.29a 3163 | 1 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 class class class wbr 5147 dom cdm 5675 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ℝcr 11105 + caddc 11109 · cmul 11111 < clt 11244 ≤ cle 11245 − cmin 11440 / cdiv 11867 2c2 12263 (,)cioo 13320 abscabs 15177 D cdv 25362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19643 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-cnfld 20930 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-lp 22622 df-perf 22623 df-cn 22713 df-cnp 22714 df-haus 22801 df-cmp 22873 df-tx 23048 df-hmeo 23241 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-xms 23808 df-ms 23809 df-tms 23810 df-cncf 24376 df-limc 25365 df-dv 25366 |
This theorem is referenced by: ioodvbdlimc1lem2 44583 ioodvbdlimc2lem 44585 |
Copyright terms: Public domain | W3C validator |