Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioo Structured version   Visualization version   GIF version

Theorem dvbdfbdioo 43053
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioo.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioo.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioo.altb (𝜑𝐴 < 𝐵)
dvbdfbdioo.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioo.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioo.dvbd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
Assertion
Ref Expression
dvbdfbdioo (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏,𝑥   𝐹,𝑎,𝑏,𝑥   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑏)

Proof of Theorem dvbdfbdioo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioo.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 dvbdfbdioo.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
32rexrd 10781 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
4 dvbdfbdioo.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
54rexrd 10781 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
62, 4readdcld 10760 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
76rehalfcld 11975 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
8 dvbdfbdioo.altb . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
9 avglt1 11966 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
102, 4, 9syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 235 . . . . . . . . 9 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 11967 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
132, 4, 12syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 235 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
153, 5, 7, 11, 14eliood 42616 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
161, 15ffvelrnd 6874 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
1716recnd 10759 . . . . . 6 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
1817abscld 14898 . . . . 5 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
1918ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
20 simplr 769 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ)
214ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ)
222ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ)
2321, 22resubcld 11158 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵𝐴) ∈ ℝ)
2420, 23remulcld 10761 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵𝐴)) ∈ ℝ)
2519, 24readdcld 10760 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ)
268ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵)
271ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
28 dvbdfbdioo.dmdv . . . . 5 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
2928ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
30 2fveq3 6691 . . . . . . . 8 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
3130breq1d 5050 . . . . . . 7 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎))
3231cbvralvw 3350 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3332biimpi 219 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3433adantl 485 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
35 eqid 2739 . . . 4 ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))
3622, 21, 26, 27, 29, 20, 34, 35dvbdfbdioolem2 43052 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))))
37 2fveq3 6691 . . . . . . 7 (𝑥 = 𝑦 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑦)))
3837breq1d 5050 . . . . . 6 (𝑥 = 𝑦 → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ 𝑏))
3938cbvralvw 3350 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏)
40 breq2 5044 . . . . . 6 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → ((abs‘(𝐹𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4140ralbidv 3110 . . . . 5 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4239, 41syl5bb 286 . . . 4 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4342rspcev 3529 . . 3 ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
4425, 36, 43syl2anc 587 . 2 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
45 dvbdfbdioo.dvbd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
4644, 45r19.29a 3200 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wrex 3055   class class class wbr 5040  dom cdm 5535  wf 6345  cfv 6349  (class class class)co 7182  cr 10626   + caddc 10630   · cmul 10632   < clt 10765  cle 10766  cmin 10960   / cdiv 11387  2c2 11783  (,)cioo 12833  abscabs 14695   D cdv 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-er 8332  df-map 8451  df-pm 8452  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-fi 8960  df-sup 8991  df-inf 8992  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-q 12443  df-rp 12485  df-xneg 12602  df-xadd 12603  df-xmul 12604  df-ioo 12837  df-ico 12839  df-icc 12840  df-fz 12994  df-fzo 13137  df-seq 13473  df-exp 13534  df-hash 13795  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-hom 16704  df-cco 16705  df-rest 16811  df-topn 16812  df-0g 16830  df-gsum 16831  df-topgen 16832  df-pt 16833  df-prds 16836  df-xrs 16890  df-qtop 16895  df-imas 16896  df-xps 16898  df-mre 16972  df-mrc 16973  df-acs 16975  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-submnd 18085  df-mulg 18355  df-cntz 18577  df-cmn 19038  df-psmet 20221  df-xmet 20222  df-met 20223  df-bl 20224  df-mopn 20225  df-fbas 20226  df-fg 20227  df-cnfld 20230  df-top 21657  df-topon 21674  df-topsp 21696  df-bases 21709  df-cld 21782  df-ntr 21783  df-cls 21784  df-nei 21861  df-lp 21899  df-perf 21900  df-cn 21990  df-cnp 21991  df-haus 22078  df-cmp 22150  df-tx 22325  df-hmeo 22518  df-fil 22609  df-fm 22701  df-flim 22702  df-flf 22703  df-xms 23085  df-ms 23086  df-tms 23087  df-cncf 23642  df-limc 24630  df-dv 24631
This theorem is referenced by:  ioodvbdlimc1lem2  43055  ioodvbdlimc2lem  43057
  Copyright terms: Public domain W3C validator