Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioo Structured version   Visualization version   GIF version

Theorem dvbdfbdioo 41776
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioo.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioo.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioo.altb (𝜑𝐴 < 𝐵)
dvbdfbdioo.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioo.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioo.dvbd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
Assertion
Ref Expression
dvbdfbdioo (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏,𝑥   𝐹,𝑎,𝑏,𝑥   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑏)

Proof of Theorem dvbdfbdioo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioo.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 dvbdfbdioo.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
32rexrd 10537 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
4 dvbdfbdioo.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
54rexrd 10537 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
62, 4readdcld 10516 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
76rehalfcld 11732 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
8 dvbdfbdioo.altb . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
9 avglt1 11723 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
102, 4, 9syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 233 . . . . . . . . 9 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 11724 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
132, 4, 12syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 233 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
153, 5, 7, 11, 14eliood 41334 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
161, 15ffvelrnd 6717 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
1716recnd 10515 . . . . . 6 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
1817abscld 14630 . . . . 5 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
1918ad2antrr 722 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
20 simplr 765 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ)
214ad2antrr 722 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ)
222ad2antrr 722 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ)
2321, 22resubcld 10916 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵𝐴) ∈ ℝ)
2420, 23remulcld 10517 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵𝐴)) ∈ ℝ)
2519, 24readdcld 10516 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ)
268ad2antrr 722 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵)
271ad2antrr 722 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
28 dvbdfbdioo.dmdv . . . . 5 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
2928ad2antrr 722 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
30 2fveq3 6543 . . . . . . . 8 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
3130breq1d 4972 . . . . . . 7 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎))
3231cbvralv 3403 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3332biimpi 217 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3433adantl 482 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
35 eqid 2795 . . . 4 ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))
3622, 21, 26, 27, 29, 20, 34, 35dvbdfbdioolem2 41775 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))))
37 2fveq3 6543 . . . . . . 7 (𝑥 = 𝑦 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑦)))
3837breq1d 4972 . . . . . 6 (𝑥 = 𝑦 → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ 𝑏))
3938cbvralv 3403 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏)
40 breq2 4966 . . . . . 6 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → ((abs‘(𝐹𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4140ralbidv 3164 . . . . 5 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4239, 41syl5bb 284 . . . 4 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4342rspcev 3559 . . 3 ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
4425, 36, 43syl2anc 584 . 2 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
45 dvbdfbdioo.dvbd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
4644, 45r19.29a 3252 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106   class class class wbr 4962  dom cdm 5443  wf 6221  cfv 6225  (class class class)co 7016  cr 10382   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  2c2 11540  (,)cioo 12588  abscabs 14427   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  ioodvbdlimc1lem2  41778  ioodvbdlimc2lem  41780
  Copyright terms: Public domain W3C validator