![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserdvlem1 | Structured version Visualization version GIF version |
Description: Lemma for pserdv 26281. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
Ref | Expression |
---|---|
pserdvlem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psercn.s | . . . . . . . . 9 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
2 | cnvimass 6080 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
3 | absf 15291 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
4 | 3 | fdmi 6729 | . . . . . . . . . 10 ⊢ dom abs = ℂ |
5 | 2, 4 | sseqtri 4018 | . . . . . . . . 9 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
6 | 1, 5 | eqsstri 4016 | . . . . . . . 8 ⊢ 𝑆 ⊆ ℂ |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | 7 | sselda 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
9 | 8 | abscld 15390 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
10 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
11 | pserf.f | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
12 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
13 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
14 | psercn.m | . . . . . . . 8 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
15 | 10, 11, 12, 13, 1, 14 | psercnlem1 26277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
16 | 15 | simp1d 1141 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
17 | 16 | rpred 13023 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
18 | 9, 17 | readdcld 11250 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) |
19 | 0red 11224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) | |
20 | 8 | absge0d 15398 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
21 | 9, 16 | ltaddrpd 13056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) |
22 | 19, 9, 18, 20, 21 | lelttrd 11379 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) |
23 | 18, 22 | elrpd 13020 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+) |
24 | 23 | rphalfcld 13035 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+) |
25 | 15 | simp2d 1142 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
26 | avglt1 12457 | . . . 4 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) | |
27 | 9, 17, 26 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) |
28 | 25, 27 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)) |
29 | 18 | rehalfcld 12466 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ) |
30 | 29 | rexrd 11271 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) |
31 | 17 | rexrd 11271 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
32 | iccssxr 13414 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
33 | 10, 12, 13 | radcnvcl 26268 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
34 | 32, 33 | sselid 3980 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
36 | avglt2 12458 | . . . . 5 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) | |
37 | 9, 17, 36 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
38 | 25, 37 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀) |
39 | 15 | simp3d 1143 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
40 | 30, 31, 35, 38, 39 | xrlttrd 13145 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
41 | 24, 28, 40 | 3jca 1127 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3431 ⊆ wss 3948 ifcif 4528 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5675 dom cdm 5676 “ cima 5679 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 supcsup 9441 ℂcc 11114 ℝcr 11115 0cc0 11116 1c1 11117 + caddc 11119 · cmul 11121 +∞cpnf 11252 ℝ*cxr 11254 < clt 11255 / cdiv 11878 2c2 12274 ℕ0cn0 12479 ℝ+crp 12981 [,)cico 13333 [,]cicc 13334 seqcseq 13973 ↑cexp 14034 abscabs 15188 ⇝ cli 15435 Σcsu 15639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-ico 13337 df-icc 13338 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 |
This theorem is referenced by: pserdvlem2 26280 pserdv 26281 |
Copyright terms: Public domain | W3C validator |