| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserdvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for pserdv 26386. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| Ref | Expression |
|---|---|
| pserdvlem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psercn.s | . . . . . . . . 9 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 2 | cnvimass 6038 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 3 | absf 15252 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
| 4 | 3 | fdmi 6670 | . . . . . . . . . 10 ⊢ dom abs = ℂ |
| 5 | 2, 4 | sseqtri 3979 | . . . . . . . . 9 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 6 | 1, 5 | eqsstri 3977 | . . . . . . . 8 ⊢ 𝑆 ⊆ ℂ |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 7 | sselda 3930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
| 9 | 8 | abscld 15353 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
| 10 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 11 | pserf.f | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 12 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 13 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 14 | psercn.m | . . . . . . . 8 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
| 15 | 10, 11, 12, 13, 1, 14 | psercnlem1 26382 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
| 16 | 15 | simp1d 1142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
| 17 | 16 | rpred 12940 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 18 | 9, 17 | readdcld 11152 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) |
| 19 | 0red 11126 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) | |
| 20 | 8 | absge0d 15361 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
| 21 | 9, 16 | ltaddrpd 12973 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) |
| 22 | 19, 9, 18, 20, 21 | lelttrd 11282 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) |
| 23 | 18, 22 | elrpd 12937 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+) |
| 24 | 23 | rphalfcld 12952 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+) |
| 25 | 15 | simp2d 1143 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
| 26 | avglt1 12370 | . . . 4 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) | |
| 27 | 9, 17, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) |
| 28 | 25, 27 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)) |
| 29 | 18 | rehalfcld 12379 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ) |
| 30 | 29 | rexrd 11173 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) |
| 31 | 17 | rexrd 11173 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
| 32 | iccssxr 13337 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 33 | 10, 12, 13 | radcnvcl 26373 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| 34 | 32, 33 | sselid 3928 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| 35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
| 36 | avglt2 12371 | . . . . 5 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) | |
| 37 | 9, 17, 36 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
| 38 | 25, 37 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀) |
| 39 | 15 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
| 40 | 30, 31, 35, 38, 39 | xrlttrd 13064 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
| 41 | 24, 28, 40 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 dom cdm 5621 “ cima 5624 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 supcsup 9335 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 +∞cpnf 11154 ℝ*cxr 11156 < clt 11157 / cdiv 11785 2c2 12191 ℕ0cn0 12392 ℝ+crp 12896 [,)cico 13254 [,]cicc 13255 seqcseq 13915 ↑cexp 13975 abscabs 15148 ⇝ cli 15398 Σcsu 15600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-icc 13259 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 |
| This theorem is referenced by: pserdvlem2 26385 pserdv 26386 |
| Copyright terms: Public domain | W3C validator |