![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserdvlem1 | Structured version Visualization version GIF version |
Description: Lemma for pserdv 26488. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
Ref | Expression |
---|---|
pserdvlem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psercn.s | . . . . . . . . 9 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
2 | cnvimass 6102 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
3 | absf 15373 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
4 | 3 | fdmi 6748 | . . . . . . . . . 10 ⊢ dom abs = ℂ |
5 | 2, 4 | sseqtri 4032 | . . . . . . . . 9 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
6 | 1, 5 | eqsstri 4030 | . . . . . . . 8 ⊢ 𝑆 ⊆ ℂ |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | 7 | sselda 3995 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
9 | 8 | abscld 15472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
10 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
11 | pserf.f | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
12 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
13 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
14 | psercn.m | . . . . . . . 8 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
15 | 10, 11, 12, 13, 1, 14 | psercnlem1 26484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
16 | 15 | simp1d 1141 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
17 | 16 | rpred 13075 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
18 | 9, 17 | readdcld 11288 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) |
19 | 0red 11262 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) | |
20 | 8 | absge0d 15480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
21 | 9, 16 | ltaddrpd 13108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) |
22 | 19, 9, 18, 20, 21 | lelttrd 11417 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) |
23 | 18, 22 | elrpd 13072 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+) |
24 | 23 | rphalfcld 13087 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+) |
25 | 15 | simp2d 1142 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
26 | avglt1 12502 | . . . 4 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) | |
27 | 9, 17, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) |
28 | 25, 27 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)) |
29 | 18 | rehalfcld 12511 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ) |
30 | 29 | rexrd 11309 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) |
31 | 17 | rexrd 11309 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
32 | iccssxr 13467 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
33 | 10, 12, 13 | radcnvcl 26475 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
34 | 32, 33 | sselid 3993 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
36 | avglt2 12503 | . . . . 5 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) | |
37 | 9, 17, 36 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
38 | 25, 37 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀) |
39 | 15 | simp3d 1143 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
40 | 30, 31, 35, 38, 39 | xrlttrd 13198 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
41 | 24, 28, 40 | 3jca 1127 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5688 dom cdm 5689 “ cima 5692 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supcsup 9478 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 / cdiv 11918 2c2 12319 ℕ0cn0 12524 ℝ+crp 13032 [,)cico 13386 [,]cicc 13387 seqcseq 14039 ↑cexp 14099 abscabs 15270 ⇝ cli 15517 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-icc 13391 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 |
This theorem is referenced by: pserdvlem2 26487 pserdv 26488 |
Copyright terms: Public domain | W3C validator |