MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem1 Structured version   Visualization version   GIF version

Theorem pserdvlem1 26489
Description: Lemma for pserdv 26491. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
pserdvlem1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem1
StepHypRef Expression
1 psercn.s . . . . . . . . 9 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 6111 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 15386 . . . . . . . . . . 11 abs:ℂ⟶ℝ
43fdmi 6758 . . . . . . . . . 10 dom abs = ℂ
52, 4sseqtri 4045 . . . . . . . . 9 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 4043 . . . . . . . 8 𝑆 ⊆ ℂ
76a1i 11 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
87sselda 4008 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 15485 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
10 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
11 pserf.f . . . . . . . 8 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
12 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
13 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.m . . . . . . . 8 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
1510, 11, 12, 13, 1, 14psercnlem1 26487 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1615simp1d 1142 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1716rpred 13099 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
189, 17readdcld 11319 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
19 0red 11293 . . . . 5 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
208absge0d 15493 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
219, 16ltaddrpd 13132 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
2219, 9, 18, 20, 21lelttrd 11448 . . . 4 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
2318, 22elrpd 13096 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
2423rphalfcld 13111 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
2515simp2d 1143 . . 3 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
26 avglt1 12531 . . . 4 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
279, 17, 26syl2anc 583 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
2825, 27mpbid 232 . 2 ((𝜑𝑎𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))
2918rehalfcld 12540 . . . 4 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
3029rexrd 11340 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
3117rexrd 11340 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
32 iccssxr 13490 . . . . 5 (0[,]+∞) ⊆ ℝ*
3310, 12, 13radcnvcl 26478 . . . . 5 (𝜑𝑅 ∈ (0[,]+∞))
3432, 33sselid 4006 . . . 4 (𝜑𝑅 ∈ ℝ*)
3534adantr 480 . . 3 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
36 avglt2 12532 . . . . 5 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
379, 17, 36syl2anc 583 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
3825, 37mpbid 232 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
3915simp3d 1144 . . 3 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
4030, 31, 35, 38, 39xrlttrd 13221 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
4124, 28, 403jca 1128 1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324   / cdiv 11947  2c2 12348  0cn0 12553  +crp 13057  [,)cico 13409  [,]cicc 13410  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  pserdvlem2  26490  pserdv  26491
  Copyright terms: Public domain W3C validator