| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserdvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for pserdv 26391. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| Ref | Expression |
|---|---|
| pserdvlem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psercn.s | . . . . . . . . 9 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 2 | cnvimass 6069 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 3 | absf 15356 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
| 4 | 3 | fdmi 6717 | . . . . . . . . . 10 ⊢ dom abs = ℂ |
| 5 | 2, 4 | sseqtri 4007 | . . . . . . . . 9 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 6 | 1, 5 | eqsstri 4005 | . . . . . . . 8 ⊢ 𝑆 ⊆ ℂ |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 7 | sselda 3958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
| 9 | 8 | abscld 15455 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
| 10 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 11 | pserf.f | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 12 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 13 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 14 | psercn.m | . . . . . . . 8 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
| 15 | 10, 11, 12, 13, 1, 14 | psercnlem1 26387 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
| 16 | 15 | simp1d 1142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
| 17 | 16 | rpred 13051 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 18 | 9, 17 | readdcld 11264 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) |
| 19 | 0red 11238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) | |
| 20 | 8 | absge0d 15463 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
| 21 | 9, 16 | ltaddrpd 13084 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) |
| 22 | 19, 9, 18, 20, 21 | lelttrd 11393 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) |
| 23 | 18, 22 | elrpd 13048 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+) |
| 24 | 23 | rphalfcld 13063 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+) |
| 25 | 15 | simp2d 1143 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
| 26 | avglt1 12479 | . . . 4 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) | |
| 27 | 9, 17, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) |
| 28 | 25, 27 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)) |
| 29 | 18 | rehalfcld 12488 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ) |
| 30 | 29 | rexrd 11285 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) |
| 31 | 17 | rexrd 11285 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
| 32 | iccssxr 13447 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 33 | 10, 12, 13 | radcnvcl 26378 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| 34 | 32, 33 | sselid 3956 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| 35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
| 36 | avglt2 12480 | . . . . 5 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) | |
| 37 | 9, 17, 36 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
| 38 | 25, 37 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀) |
| 39 | 15 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
| 40 | 30, 31, 35, 38, 39 | xrlttrd 13175 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
| 41 | 24, 28, 40 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supcsup 9452 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 / cdiv 11894 2c2 12295 ℕ0cn0 12501 ℝ+crp 13008 [,)cico 13364 [,]cicc 13365 seqcseq 14019 ↑cexp 14079 abscabs 15253 ⇝ cli 15500 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 |
| This theorem is referenced by: pserdvlem2 26390 pserdv 26391 |
| Copyright terms: Public domain | W3C validator |