| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldfi | Structured version Visualization version GIF version | ||
| Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| oldfi | ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7808 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | oldval 27801 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 4 | madef 27803 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 5 | ffun 6660 | . . . . 5 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 7 | nnfi 9083 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 8 | imafi 9205 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin) |
| 10 | elnn 7813 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 11 | 10 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ω) |
| 12 | madefi 27864 | . . . . . 6 ⊢ (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → ( M ‘𝑥) ∈ Fin) |
| 14 | 13 | ralrimiva 3124 | . . . 4 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin) |
| 15 | onss 7724 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ On) |
| 17 | 4 | fdmi 6668 | . . . . . 6 ⊢ dom M = On |
| 18 | 16, 17 | sseqtrrdi 3971 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
| 19 | funimass4 6892 | . . . . 5 ⊢ ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) | |
| 20 | 6, 18, 19 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) |
| 21 | 14, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin) |
| 22 | unifi 9234 | . . 3 ⊢ ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ∪ ( M “ 𝐴) ∈ Fin) | |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → ∪ ( M “ 𝐴) ∈ Fin) |
| 24 | 3, 23 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 “ cima 5622 Oncon0 6312 Fun wfun 6481 ⟶wf 6483 ‘cfv 6487 ωcom 7802 Fincfn 8875 No csur 27584 M cmade 27789 O cold 27790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-ac2 10360 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-fin 8879 df-card 9838 df-acn 9841 df-ac 10013 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-made 27794 df-old 27795 |
| This theorem is referenced by: onsfi 28289 |
| Copyright terms: Public domain | W3C validator |