![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldfi | Structured version Visualization version GIF version |
Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
Ref | Expression |
---|---|
oldfi | ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7893 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | oldval 27908 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
4 | madef 27910 | . . . . 5 ⊢ M :On⟶𝒫 No | |
5 | ffun 6740 | . . . . 5 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Fun M |
7 | nnfi 9206 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
8 | imafi 9351 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin) | |
9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin) |
10 | elnn 7898 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
11 | 10 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ω) |
12 | madefi 27965 | . . . . . 6 ⊢ (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → ( M ‘𝑥) ∈ Fin) |
14 | 13 | ralrimiva 3144 | . . . 4 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin) |
15 | onss 7804 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ On) |
17 | 4 | fdmi 6748 | . . . . . 6 ⊢ dom M = On |
18 | 16, 17 | sseqtrrdi 4047 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
19 | funimass4 6973 | . . . . 5 ⊢ ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) | |
20 | 6, 18, 19 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) |
21 | 14, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin) |
22 | unifi 9382 | . . 3 ⊢ ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ∪ ( M “ 𝐴) ∈ Fin) | |
23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → ∪ ( M “ 𝐴) ∈ Fin) |
24 | 3, 23 | eqeltrd 2839 | 1 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 dom cdm 5689 “ cima 5692 Oncon0 6386 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 ωcom 7887 Fincfn 8984 No csur 27699 M cmade 27896 O cold 27897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-fin 8988 df-card 9977 df-acn 9980 df-ac 10154 df-no 27702 df-slt 27703 df-bday 27704 df-sslt 27841 df-scut 27843 df-made 27901 df-old 27902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |