| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldfi | Structured version Visualization version GIF version | ||
| Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| oldfi | ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7872 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | oldval 27819 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 4 | madef 27821 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 5 | ffun 6714 | . . . . 5 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 7 | nnfi 9186 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 8 | imafi 9330 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin) |
| 10 | elnn 7877 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 11 | 10 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ω) |
| 12 | madefi 27881 | . . . . . 6 ⊢ (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → ( M ‘𝑥) ∈ Fin) |
| 14 | 13 | ralrimiva 3133 | . . . 4 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin) |
| 15 | onss 7784 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ On) |
| 17 | 4 | fdmi 6722 | . . . . . 6 ⊢ dom M = On |
| 18 | 16, 17 | sseqtrrdi 4005 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
| 19 | funimass4 6948 | . . . . 5 ⊢ ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) | |
| 20 | 6, 18, 19 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) |
| 21 | 14, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin) |
| 22 | unifi 9361 | . . 3 ⊢ ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ∪ ( M “ 𝐴) ∈ Fin) | |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → ∪ ( M “ 𝐴) ∈ Fin) |
| 24 | 3, 23 | eqeltrd 2835 | 1 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 dom cdm 5659 “ cima 5662 Oncon0 6357 Fun wfun 6530 ⟶wf 6532 ‘cfv 6536 ωcom 7866 Fincfn 8964 No csur 27608 M cmade 27807 O cold 27808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-fin 8968 df-card 9958 df-acn 9961 df-ac 10135 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-made 27812 df-old 27813 |
| This theorem is referenced by: onsfi 28304 |
| Copyright terms: Public domain | W3C validator |