| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldfi | Structured version Visualization version GIF version | ||
| Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| oldfi | ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7876 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | oldval 27848 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 4 | madef 27850 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 5 | ffun 6720 | . . . . 5 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 7 | nnfi 9190 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 8 | imafi 9336 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin) |
| 10 | elnn 7881 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 11 | 10 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ω) |
| 12 | madefi 27905 | . . . . . 6 ⊢ (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → ( M ‘𝑥) ∈ Fin) |
| 14 | 13 | ralrimiva 3133 | . . . 4 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin) |
| 15 | onss 7788 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ On) |
| 17 | 4 | fdmi 6728 | . . . . . 6 ⊢ dom M = On |
| 18 | 16, 17 | sseqtrrdi 4007 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
| 19 | funimass4 6954 | . . . . 5 ⊢ ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) | |
| 20 | 6, 18, 19 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) |
| 21 | 14, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin) |
| 22 | unifi 9367 | . . 3 ⊢ ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ∪ ( M “ 𝐴) ∈ Fin) | |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → ∪ ( M “ 𝐴) ∈ Fin) |
| 24 | 3, 23 | eqeltrd 2833 | 1 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 dom cdm 5667 “ cima 5670 Oncon0 6365 Fun wfun 6536 ⟶wf 6538 ‘cfv 6542 ωcom 7870 Fincfn 8968 No csur 27639 M cmade 27836 O cold 27837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-ac2 10486 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-fin 8972 df-card 9962 df-acn 9965 df-ac 10139 df-no 27642 df-slt 27643 df-bday 27644 df-sslt 27781 df-scut 27783 df-made 27841 df-old 27842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |