MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldfi Structured version   Visualization version   GIF version

Theorem oldfi 27882
Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
oldfi (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin)

Proof of Theorem oldfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7872 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 oldval 27819 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
31, 2syl 17 . 2 (𝐴 ∈ ω → ( O ‘𝐴) = ( M “ 𝐴))
4 madef 27821 . . . . 5 M :On⟶𝒫 No
5 ffun 6714 . . . . 5 ( M :On⟶𝒫 No → Fun M )
64, 5ax-mp 5 . . . 4 Fun M
7 nnfi 9186 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ Fin)
8 imafi 9330 . . . 4 ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin)
96, 7, 8sylancr 587 . . 3 (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin)
10 elnn 7877 . . . . . . 7 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
1110ancoms 458 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑥𝐴) → 𝑥 ∈ ω)
12 madefi 27881 . . . . . 6 (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin)
1311, 12syl 17 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥𝐴) → ( M ‘𝑥) ∈ Fin)
1413ralrimiva 3133 . . . 4 (𝐴 ∈ ω → ∀𝑥𝐴 ( M ‘𝑥) ∈ Fin)
15 onss 7784 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
161, 15syl 17 . . . . . 6 (𝐴 ∈ ω → 𝐴 ⊆ On)
174fdmi 6722 . . . . . 6 dom M = On
1816, 17sseqtrrdi 4005 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ dom M )
19 funimass4 6948 . . . . 5 ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥𝐴 ( M ‘𝑥) ∈ Fin))
206, 18, 19sylancr 587 . . . 4 (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥𝐴 ( M ‘𝑥) ∈ Fin))
2114, 20mpbird 257 . . 3 (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin)
22 unifi 9361 . . 3 ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ( M “ 𝐴) ∈ Fin)
239, 21, 22syl2anc 584 . 2 (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin)
243, 23eqeltrd 2835 1 (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931  𝒫 cpw 4580   cuni 4888  dom cdm 5659  cima 5662  Oncon0 6357  Fun wfun 6530  wf 6532  cfv 6536  ωcom 7866  Fincfn 8964   No csur 27608   M cmade 27807   O cold 27808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-ac2 10482
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-fin 8968  df-card 9958  df-acn 9961  df-ac 10135  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-made 27812  df-old 27813
This theorem is referenced by:  onsfi  28304
  Copyright terms: Public domain W3C validator