MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldfi Structured version   Visualization version   GIF version

Theorem oldfi 27865
Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
oldfi (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin)

Proof of Theorem oldfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7808 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 oldval 27801 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
31, 2syl 17 . 2 (𝐴 ∈ ω → ( O ‘𝐴) = ( M “ 𝐴))
4 madef 27803 . . . . 5 M :On⟶𝒫 No
5 ffun 6660 . . . . 5 ( M :On⟶𝒫 No → Fun M )
64, 5ax-mp 5 . . . 4 Fun M
7 nnfi 9083 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ Fin)
8 imafi 9205 . . . 4 ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin)
96, 7, 8sylancr 587 . . 3 (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin)
10 elnn 7813 . . . . . . 7 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
1110ancoms 458 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑥𝐴) → 𝑥 ∈ ω)
12 madefi 27864 . . . . . 6 (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin)
1311, 12syl 17 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥𝐴) → ( M ‘𝑥) ∈ Fin)
1413ralrimiva 3124 . . . 4 (𝐴 ∈ ω → ∀𝑥𝐴 ( M ‘𝑥) ∈ Fin)
15 onss 7724 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
161, 15syl 17 . . . . . 6 (𝐴 ∈ ω → 𝐴 ⊆ On)
174fdmi 6668 . . . . . 6 dom M = On
1816, 17sseqtrrdi 3971 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ dom M )
19 funimass4 6892 . . . . 5 ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥𝐴 ( M ‘𝑥) ∈ Fin))
206, 18, 19sylancr 587 . . . 4 (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥𝐴 ( M ‘𝑥) ∈ Fin))
2114, 20mpbird 257 . . 3 (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin)
22 unifi 9234 . . 3 ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ( M “ 𝐴) ∈ Fin)
239, 21, 22syl2anc 584 . 2 (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin)
243, 23eqeltrd 2831 1 (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  𝒫 cpw 4549   cuni 4858  dom cdm 5619  cima 5622  Oncon0 6312  Fun wfun 6481  wf 6483  cfv 6487  ωcom 7802  Fincfn 8875   No csur 27584   M cmade 27789   O cold 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10360
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-fin 8879  df-card 9838  df-acn 9841  df-ac 10013  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729  df-made 27794  df-old 27795
This theorem is referenced by:  onsfi  28289
  Copyright terms: Public domain W3C validator