| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldfi | Structured version Visualization version GIF version | ||
| Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| oldfi | ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7848 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | oldval 27762 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 4 | madef 27764 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 5 | ffun 6691 | . . . . 5 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 7 | nnfi 9131 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 8 | imafi 9264 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ Fin) → ( M “ 𝐴) ∈ Fin) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ∈ Fin) |
| 10 | elnn 7853 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 11 | 10 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ω) |
| 12 | madefi 27824 | . . . . . 6 ⊢ (𝑥 ∈ ω → ( M ‘𝑥) ∈ Fin) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴) → ( M ‘𝑥) ∈ Fin) |
| 14 | 13 | ralrimiva 3125 | . . . 4 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin) |
| 15 | onss 7761 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ On) |
| 17 | 4 | fdmi 6699 | . . . . . 6 ⊢ dom M = On |
| 18 | 16, 17 | sseqtrrdi 3988 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
| 19 | funimass4 6925 | . . . . 5 ⊢ ((Fun M ∧ 𝐴 ⊆ dom M ) → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) | |
| 20 | 6, 18, 19 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ω → (( M “ 𝐴) ⊆ Fin ↔ ∀𝑥 ∈ 𝐴 ( M ‘𝑥) ∈ Fin)) |
| 21 | 14, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ω → ( M “ 𝐴) ⊆ Fin) |
| 22 | unifi 9295 | . . 3 ⊢ ((( M “ 𝐴) ∈ Fin ∧ ( M “ 𝐴) ⊆ Fin) → ∪ ( M “ 𝐴) ∈ Fin) | |
| 23 | 9, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → ∪ ( M “ 𝐴) ∈ Fin) |
| 24 | 3, 23 | eqeltrd 2828 | 1 ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 dom cdm 5638 “ cima 5641 Oncon0 6332 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 ωcom 7842 Fincfn 8918 No csur 27551 M cmade 27750 O cold 27751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-fin 8922 df-card 9892 df-acn 9895 df-ac 10069 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 |
| This theorem is referenced by: onsfi 28247 |
| Copyright terms: Public domain | W3C validator |