MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmptid Structured version   Visualization version   GIF version

Theorem cncfmptid 23092
Description: The identity function is a continuous function on . (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptid
StepHypRef Expression
1 cncfss 23079 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑆cn𝑆) ⊆ (𝑆cn𝑇))
2 eqid 2825 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32cnfldtopon 22963 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4 sstr 3835 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
5 resttopon 21343 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
63, 4, 5sylancr 581 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
76cnmptid 21842 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆)))
8 eqid 2825 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
92, 8, 8cncfcn 23089 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑆 ⊆ ℂ) → (𝑆cn𝑆) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆)))
104, 4, 9syl2anc 579 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑆cn𝑆) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆)))
117, 10eleqtrrd 2909 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑆))
121, 11sseldd 3828 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wss 3798  cmpt 4954  cfv 6127  (class class class)co 6910  cc 10257  t crest 16441  TopOpenctopn 16442  fldccnfld 20113  TopOnctopon 21092   Cn ccn 21406  cnccncf 23056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fi 8592  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-fz 12627  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-rest 16443  df-topn 16444  df-topgen 16464  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cn 21409  df-cnp 21410  df-xms 22502  df-ms 22503  df-cncf 23058
This theorem is referenced by:  addccncf  23096  negcncf  23098  dvcnp2  24089  mvth  24161  dvlipcn  24163  dvfsumle  24190  dvfsumabs  24192  dvfsumlem2  24196  taylthlem2  24534  loglesqrt  24908  lgamgulmlem2  25176  pntlem3  25718  iblidicc  31215  circlemeth  31263  logdivsqrle  31273  areacirclem4  34041  idcncf  34096  areaquad  38639  idcncfg  40874  addccncf2  40878  add1cncf  40904  add2cncf  40905  sub1cncfd  40906  sub2cncfd  40907  itgsbtaddcnst  40986  dirkercncflem2  41109  fourierdlem16  41128  fourierdlem22  41134  fourierdlem93  41204  fourierdlem111  41222
  Copyright terms: Public domain W3C validator