![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfmptid | Structured version Visualization version GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfss 23079 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆–cn→𝑆) ⊆ (𝑆–cn→𝑇)) | |
2 | eqid 2825 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 22963 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
4 | sstr 3835 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
5 | resttopon 21343 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
6 | 3, 4, 5 | sylancr 581 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
7 | 6 | cnmptid 21842 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆))) |
8 | eqid 2825 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
9 | 2, 8, 8 | cncfcn 23089 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑆 ⊆ ℂ) → (𝑆–cn→𝑆) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆))) |
10 | 4, 4, 9 | syl2anc 579 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆–cn→𝑆) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆))) |
11 | 7, 10 | eleqtrrd 2909 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑆)) |
12 | 1, 11 | sseldd 3828 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 ↾t crest 16441 TopOpenctopn 16442 ℂfldccnfld 20113 TopOnctopon 21092 Cn ccn 21406 –cn→ccncf 23056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-fz 12627 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-plusg 16325 df-mulr 16326 df-starv 16327 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-rest 16443 df-topn 16444 df-topgen 16464 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-cnfld 20114 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cn 21409 df-cnp 21410 df-xms 22502 df-ms 22503 df-cncf 23058 |
This theorem is referenced by: addccncf 23096 negcncf 23098 dvcnp2 24089 mvth 24161 dvlipcn 24163 dvfsumle 24190 dvfsumabs 24192 dvfsumlem2 24196 taylthlem2 24534 loglesqrt 24908 lgamgulmlem2 25176 pntlem3 25718 iblidicc 31215 circlemeth 31263 logdivsqrle 31273 areacirclem4 34041 idcncf 34096 areaquad 38639 idcncfg 40874 addccncf2 40878 add1cncf 40904 add2cncf 40905 sub1cncfd 40906 sub2cncfd 40907 itgsbtaddcnst 40986 dirkercncflem2 41109 fourierdlem16 41128 fourierdlem22 41134 fourierdlem93 41204 fourierdlem111 41222 |
Copyright terms: Public domain | W3C validator |