Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncfmptid | Structured version Visualization version GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfss 24043 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆–cn→𝑆) ⊆ (𝑆–cn→𝑇)) | |
2 | eqid 2739 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 23927 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
4 | sstr 3933 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
5 | resttopon 22293 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
6 | 3, 4, 5 | sylancr 586 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
7 | 6 | cnmptid 22793 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆))) |
8 | eqid 2739 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
9 | 2, 8, 8 | cncfcn 24054 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝑆 ⊆ ℂ) → (𝑆–cn→𝑆) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆))) |
10 | 4, 4, 9 | syl2anc 583 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆–cn→𝑆) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑆))) |
11 | 7, 10 | eleqtrrd 2843 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑆)) |
12 | 1, 11 | sseldd 3926 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ↾t crest 17112 TopOpenctopn 17113 ℂfldccnfld 20578 TopOnctopon 22040 Cn ccn 22356 –cn→ccncf 24020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fi 9131 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-starv 16958 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-rest 17114 df-topn 17115 df-topgen 17135 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-cnfld 20579 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cn 22359 df-cnp 22360 df-xms 23454 df-ms 23455 df-cncf 24022 |
This theorem is referenced by: addccncf 24061 idcncf 24062 negcncf 24066 dvcnp2 25065 mvth 25137 dvlipcn 25139 dvfsumle 25166 dvfsumabs 25168 dvfsumlem2 25172 taylthlem2 25514 loglesqrt 25892 lgamgulmlem2 26160 pntlem3 26738 iblidicc 32551 circlemeth 32599 logdivsqrle 32609 areacirclem4 35847 lcmineqlem12 40028 areaquad 41027 idcncfg 43368 addccncf2 43371 add1cncf 43396 add2cncf 43397 sub1cncfd 43398 sub2cncfd 43399 itgsbtaddcnst 43477 dirkercncflem2 43599 fourierdlem16 43618 fourierdlem22 43624 fourierdlem93 43694 fourierdlem111 43712 |
Copyright terms: Public domain | W3C validator |