![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartleme | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 33925. (Contributed by Mario Carneiro, 26-Jan-2015.) |
Ref | Expression |
---|---|
eulerpart.p | β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} |
Ref | Expression |
---|---|
eulerpartleme | β’ (π΄ β π β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12494 | . . . 4 β’ β0 β V | |
2 | nnex 12234 | . . . 4 β’ β β V | |
3 | 1, 2 | elmap 8879 | . . 3 β’ (π΄ β (β0 βm β) β π΄:ββΆβ0) |
4 | 3 | anbi1i 623 | . 2 β’ ((π΄ β (β0 βm β) β§ ((β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π)) β (π΄:ββΆβ0 β§ ((β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π))) |
5 | cnveq 5870 | . . . . . 6 β’ (π = π΄ β β‘π = β‘π΄) | |
6 | 5 | imaeq1d 6056 | . . . . 5 β’ (π = π΄ β (β‘π β β) = (β‘π΄ β β)) |
7 | 6 | eleq1d 2813 | . . . 4 β’ (π = π΄ β ((β‘π β β) β Fin β (β‘π΄ β β) β Fin)) |
8 | fveq1 6890 | . . . . . . 7 β’ (π = π΄ β (πβπ) = (π΄βπ)) | |
9 | 8 | oveq1d 7429 | . . . . . 6 β’ (π = π΄ β ((πβπ) Β· π) = ((π΄βπ) Β· π)) |
10 | 9 | sumeq2sdv 15668 | . . . . 5 β’ (π = π΄ β Ξ£π β β ((πβπ) Β· π) = Ξ£π β β ((π΄βπ) Β· π)) |
11 | 10 | eqeq1d 2729 | . . . 4 β’ (π = π΄ β (Ξ£π β β ((πβπ) Β· π) = π β Ξ£π β β ((π΄βπ) Β· π) = π)) |
12 | 7, 11 | anbi12d 630 | . . 3 β’ (π = π΄ β (((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π) β ((β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π))) |
13 | eulerpart.p | . . 3 β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} | |
14 | 12, 13 | elrab2 3683 | . 2 β’ (π΄ β π β (π΄ β (β0 βm β) β§ ((β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π))) |
15 | 3anass 1093 | . 2 β’ ((π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π) β (π΄:ββΆβ0 β§ ((β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π))) | |
16 | 4, 14, 15 | 3bitr4i 303 | 1 β’ (π΄ β π β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 {crab 3427 β‘ccnv 5671 β cima 5675 βΆwf 6538 βcfv 6542 (class class class)co 7414 βm cmap 8834 Fincfn 8953 Β· cmul 11129 βcn 12228 β0cn0 12488 Ξ£csu 15650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-seq 13985 df-sum 15651 |
This theorem is referenced by: eulerpartlemv 33907 eulerpartlemd 33909 eulerpartlemb 33911 eulerpartlemn 33924 |
Copyright terms: Public domain | W3C validator |