| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartleme | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34414. (Contributed by Mario Carneiro, 26-Jan-2015.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| Ref | Expression |
|---|---|
| eulerpartleme | ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 12507 | . . . 4 ⊢ ℕ0 ∈ V | |
| 2 | nnex 12246 | . . . 4 ⊢ ℕ ∈ V | |
| 3 | 1, 2 | elmap 8885 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) ↔ 𝐴:ℕ⟶ℕ0) |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
| 5 | cnveq 5853 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
| 6 | 5 | imaeq1d 6046 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 7 | 6 | eleq1d 2819 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 8 | fveq1 6875 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑘) = (𝐴‘𝑘)) | |
| 9 | 8 | oveq1d 7420 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ((𝑓‘𝑘) · 𝑘) = ((𝐴‘𝑘) · 𝑘)) |
| 10 | 9 | sumeq2sdv 15719 | . . . . 5 ⊢ (𝑓 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
| 11 | 10 | eqeq1d 2737 | . . . 4 ⊢ (𝑓 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| 12 | 7, 11 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐴 → (((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁) ↔ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
| 13 | eulerpart.p | . . 3 ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} | |
| 14 | 12, 13 | elrab2 3674 | . 2 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) | |
| 16 | 4, 14, 15 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ◡ccnv 5653 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8842 df-nn 12241 df-n0 12502 df-seq 14020 df-sum 15703 |
| This theorem is referenced by: eulerpartlemv 34396 eulerpartlemd 34398 eulerpartlemb 34400 eulerpartlemn 34413 |
| Copyright terms: Public domain | W3C validator |