Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartleme Structured version   Visualization version   GIF version

Theorem eulerpartleme 34397
Description: Lemma for eulerpart 34416. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
Assertion
Ref Expression
eulerpartleme (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑓,𝑁
Allowed substitution hints:   𝑃(𝑓,𝑘)   𝑁(𝑘)

Proof of Theorem eulerpartleme
StepHypRef Expression
1 nn0ex 12394 . . . 4 0 ∈ V
2 nnex 12138 . . . 4 ℕ ∈ V
31, 2elmap 8801 . . 3 (𝐴 ∈ (ℕ0m ℕ) ↔ 𝐴:ℕ⟶ℕ0)
43anbi1i 624 . 2 ((𝐴 ∈ (ℕ0m ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁)) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁)))
5 cnveq 5817 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
65imaeq1d 6012 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
76eleq1d 2818 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
8 fveq1 6827 . . . . . . 7 (𝑓 = 𝐴 → (𝑓𝑘) = (𝐴𝑘))
98oveq1d 7367 . . . . . 6 (𝑓 = 𝐴 → ((𝑓𝑘) · 𝑘) = ((𝐴𝑘) · 𝑘))
109sumeq2sdv 15612 . . . . 5 (𝑓 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
1110eqeq1d 2735 . . . 4 (𝑓 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
127, 11anbi12d 632 . . 3 (𝑓 = 𝐴 → (((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁) ↔ ((𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁)))
13 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1412, 13elrab2 3646 . 2 (𝐴𝑃 ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁)))
15 3anass 1094 . 2 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁)))
164, 14, 153bitr4i 303 1 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  ccnv 5618  cima 5622  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875   · cmul 11018  cn 12132  0cn0 12388  Σcsu 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-map 8758  df-nn 12133  df-n0 12389  df-seq 13911  df-sum 15596
This theorem is referenced by:  eulerpartlemv  34398  eulerpartlemd  34400  eulerpartlemb  34402  eulerpartlemn  34415
  Copyright terms: Public domain W3C validator