Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartleme Structured version   Visualization version   GIF version

Theorem eulerpartleme 33357
Description: Lemma for eulerpart 33376. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (β„•0 ↑m β„•) ∣ ((◑𝑓 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = 𝑁)}
Assertion
Ref Expression
eulerpartleme (𝐴 ∈ 𝑃 ↔ (𝐴:β„•βŸΆβ„•0 ∧ (◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁))
Distinct variable groups:   𝑓,π‘˜,𝐴   𝑓,𝑁
Allowed substitution hints:   𝑃(𝑓,π‘˜)   𝑁(π‘˜)

Proof of Theorem eulerpartleme
StepHypRef Expression
1 nn0ex 12477 . . . 4 β„•0 ∈ V
2 nnex 12217 . . . 4 β„• ∈ V
31, 2elmap 8864 . . 3 (𝐴 ∈ (β„•0 ↑m β„•) ↔ 𝐴:β„•βŸΆβ„•0)
43anbi1i 624 . 2 ((𝐴 ∈ (β„•0 ↑m β„•) ∧ ((◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁)) ↔ (𝐴:β„•βŸΆβ„•0 ∧ ((◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁)))
5 cnveq 5873 . . . . . 6 (𝑓 = 𝐴 β†’ ◑𝑓 = ◑𝐴)
65imaeq1d 6058 . . . . 5 (𝑓 = 𝐴 β†’ (◑𝑓 β€œ β„•) = (◑𝐴 β€œ β„•))
76eleq1d 2818 . . . 4 (𝑓 = 𝐴 β†’ ((◑𝑓 β€œ β„•) ∈ Fin ↔ (◑𝐴 β€œ β„•) ∈ Fin))
8 fveq1 6890 . . . . . . 7 (𝑓 = 𝐴 β†’ (π‘“β€˜π‘˜) = (π΄β€˜π‘˜))
98oveq1d 7423 . . . . . 6 (𝑓 = 𝐴 β†’ ((π‘“β€˜π‘˜) Β· π‘˜) = ((π΄β€˜π‘˜) Β· π‘˜))
109sumeq2sdv 15649 . . . . 5 (𝑓 = 𝐴 β†’ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜))
1110eqeq1d 2734 . . . 4 (𝑓 = 𝐴 β†’ (Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = 𝑁 ↔ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁))
127, 11anbi12d 631 . . 3 (𝑓 = 𝐴 β†’ (((◑𝑓 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = 𝑁) ↔ ((◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁)))
13 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (β„•0 ↑m β„•) ∣ ((◑𝑓 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = 𝑁)}
1412, 13elrab2 3686 . 2 (𝐴 ∈ 𝑃 ↔ (𝐴 ∈ (β„•0 ↑m β„•) ∧ ((◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁)))
15 3anass 1095 . 2 ((𝐴:β„•βŸΆβ„•0 ∧ (◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁) ↔ (𝐴:β„•βŸΆβ„•0 ∧ ((◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁)))
164, 14, 153bitr4i 302 1 (𝐴 ∈ 𝑃 ↔ (𝐴:β„•βŸΆβ„•0 ∧ (◑𝐴 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π΄β€˜π‘˜) Β· π‘˜) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  β—‘ccnv 5675   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  Fincfn 8938   Β· cmul 11114  β„•cn 12211  β„•0cn0 12471  Ξ£csu 15631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-seq 13966  df-sum 15632
This theorem is referenced by:  eulerpartlemv  33358  eulerpartlemd  33360  eulerpartlemb  33362  eulerpartlemn  33375
  Copyright terms: Public domain W3C validator