![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartleme | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 31257. (Contributed by Mario Carneiro, 26-Jan-2015.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
Ref | Expression |
---|---|
eulerpartleme | ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 11751 | . . . 4 ⊢ ℕ0 ∈ V | |
2 | nnex 11492 | . . . 4 ⊢ ℕ ∈ V | |
3 | 1, 2 | elmap 8285 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ↔ 𝐴:ℕ⟶ℕ0) |
4 | 3 | anbi1i 623 | . 2 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
5 | cnveq 5630 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
6 | 5 | imaeq1d 5805 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
7 | 6 | eleq1d 2867 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
8 | fveq1 6537 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑘) = (𝐴‘𝑘)) | |
9 | 8 | oveq1d 7031 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ((𝑓‘𝑘) · 𝑘) = ((𝐴‘𝑘) · 𝑘)) |
10 | 9 | sumeq2sdv 14894 | . . . . 5 ⊢ (𝑓 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
11 | 10 | eqeq1d 2797 | . . . 4 ⊢ (𝑓 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
12 | 7, 11 | anbi12d 630 | . . 3 ⊢ (𝑓 = 𝐴 → (((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁) ↔ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
13 | eulerpart.p | . . 3 ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} | |
14 | 12, 13 | elrab2 3621 | . 2 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
15 | 3anass 1088 | . 2 ⊢ ((𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) | |
16 | 4, 14, 15 | 3bitr4i 304 | 1 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 {crab 3109 ◡ccnv 5442 “ cima 5446 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ↑𝑚 cmap 8256 Fincfn 8357 · cmul 10388 ℕcn 11486 ℕ0cn0 11745 Σcsu 14876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-seq 13220 df-sum 14877 |
This theorem is referenced by: eulerpartlemv 31239 eulerpartlemd 31241 eulerpartlemb 31243 eulerpartlemn 31256 |
Copyright terms: Public domain | W3C validator |