| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartleme | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34373. (Contributed by Mario Carneiro, 26-Jan-2015.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| Ref | Expression |
|---|---|
| eulerpartleme | ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 12448 | . . . 4 ⊢ ℕ0 ∈ V | |
| 2 | nnex 12192 | . . . 4 ⊢ ℕ ∈ V | |
| 3 | 1, 2 | elmap 8844 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) ↔ 𝐴:ℕ⟶ℕ0) |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
| 5 | cnveq 5837 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
| 6 | 5 | imaeq1d 6030 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 8 | fveq1 6857 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑘) = (𝐴‘𝑘)) | |
| 9 | 8 | oveq1d 7402 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ((𝑓‘𝑘) · 𝑘) = ((𝐴‘𝑘) · 𝑘)) |
| 10 | 9 | sumeq2sdv 15669 | . . . . 5 ⊢ (𝑓 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
| 11 | 10 | eqeq1d 2731 | . . . 4 ⊢ (𝑓 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| 12 | 7, 11 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐴 → (((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁) ↔ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
| 13 | eulerpart.p | . . 3 ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} | |
| 14 | 12, 13 | elrab2 3662 | . 2 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁))) | |
| 16 | 4, 14, 15 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 · cmul 11073 ℕcn 12186 ℕ0cn0 12442 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-n0 12443 df-seq 13967 df-sum 15653 |
| This theorem is referenced by: eulerpartlemv 34355 eulerpartlemd 34357 eulerpartlemb 34359 eulerpartlemn 34372 |
| Copyright terms: Public domain | W3C validator |