| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constr01 | Structured version Visualization version GIF version | ||
| Description: 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| Ref | Expression |
|---|---|
| constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| constrsscn.1 | ⊢ (𝜑 → 𝑁 ∈ On) |
| Ref | Expression |
|---|---|
| constr01 | ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrsscn.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ On) | |
| 2 | fveq2 6840 | . . . 4 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
| 3 | 2 | sseq2d 3976 | . . 3 ⊢ (𝑚 = ∅ → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘∅))) |
| 4 | fveq2 6840 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
| 5 | 4 | sseq2d 3976 | . . 3 ⊢ (𝑚 = 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑛))) |
| 6 | fveq2 6840 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
| 7 | 6 | sseq2d 3976 | . . 3 ⊢ (𝑚 = suc 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘suc 𝑛))) |
| 8 | fveq2 6840 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
| 9 | 8 | sseq2d 3976 | . . 3 ⊢ (𝑚 = 𝑁 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑁))) |
| 10 | constr0.1 | . . . . 5 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 11 | 10 | constr0 33720 | . . . 4 ⊢ (𝐶‘∅) = {0, 1} |
| 12 | 11 | eqimss2i 4005 | . . 3 ⊢ {0, 1} ⊆ (𝐶‘∅) |
| 13 | simpr 484 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘𝑛)) | |
| 14 | simpl 482 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 𝑛 ∈ On) | |
| 15 | c0ex 11144 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 16 | 15 | prid1 4722 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
| 17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ {0, 1}) |
| 18 | 13, 17 | sseldd 3944 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ (𝐶‘𝑛)) |
| 19 | 10, 14, 18 | constrsslem 33724 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → (𝐶‘𝑛) ⊆ (𝐶‘suc 𝑛)) |
| 20 | 13, 19 | sstrd 3954 | . . . 4 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘suc 𝑛)) |
| 21 | 20 | ex 412 | . . 3 ⊢ (𝑛 ∈ On → ({0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘suc 𝑛))) |
| 22 | 0ellim 6384 | . . . . . 6 ⊢ (Lim 𝑚 → ∅ ∈ 𝑚) | |
| 23 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = (𝐶‘∅)) | |
| 24 | 23, 11 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = {0, 1}) |
| 25 | 24 | ssiun2s 5007 | . . . . . 6 ⊢ (∅ ∈ 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
| 26 | 22, 25 | syl 17 | . . . . 5 ⊢ (Lim 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
| 27 | vex 3448 | . . . . . . 7 ⊢ 𝑚 ∈ V | |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (Lim 𝑚 → 𝑚 ∈ V) |
| 29 | id 22 | . . . . . 6 ⊢ (Lim 𝑚 → Lim 𝑚) | |
| 30 | 10, 28, 29 | constrlim 33722 | . . . . 5 ⊢ (Lim 𝑚 → (𝐶‘𝑚) = ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
| 31 | 26, 30 | sseqtrrd 3981 | . . . 4 ⊢ (Lim 𝑚 → {0, 1} ⊆ (𝐶‘𝑚)) |
| 32 | 31 | a1d 25 | . . 3 ⊢ (Lim 𝑚 → (∀𝑛 ∈ 𝑚 {0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘𝑚))) |
| 33 | 3, 5, 7, 9, 12, 21, 32 | tfinds 7816 | . 2 ⊢ (𝑁 ∈ On → {0, 1} ⊆ (𝐶‘𝑁)) |
| 34 | 1, 33 | syl 17 | 1 ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {cpr 4587 ∪ ciun 4951 ↦ cmpt 5183 Oncon0 6320 Lim wlim 6321 suc csuc 6322 ‘cfv 6499 (class class class)co 7369 reccrdg 8354 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 − cmin 11381 ∗ccj 15038 ℑcim 15040 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 |
| This theorem is referenced by: constrss 33726 constrelextdg2 33730 constrextdg2lem 33731 |
| Copyright terms: Public domain | W3C validator |