![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > constr01 | Structured version Visualization version GIF version |
Description: 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
Ref | Expression |
---|---|
constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
constrsscn.1 | ⊢ (𝜑 → 𝑁 ∈ On) |
Ref | Expression |
---|---|
constr01 | ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constrsscn.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ On) | |
2 | fveq2 6907 | . . . 4 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
3 | 2 | sseq2d 4028 | . . 3 ⊢ (𝑚 = ∅ → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘∅))) |
4 | fveq2 6907 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
5 | 4 | sseq2d 4028 | . . 3 ⊢ (𝑚 = 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑛))) |
6 | fveq2 6907 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
7 | 6 | sseq2d 4028 | . . 3 ⊢ (𝑚 = suc 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘suc 𝑛))) |
8 | fveq2 6907 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
9 | 8 | sseq2d 4028 | . . 3 ⊢ (𝑚 = 𝑁 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑁))) |
10 | constr0.1 | . . . . 5 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
11 | 10 | constr0 33742 | . . . 4 ⊢ (𝐶‘∅) = {0, 1} |
12 | 11 | eqimss2i 4057 | . . 3 ⊢ {0, 1} ⊆ (𝐶‘∅) |
13 | simpr 484 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘𝑛)) | |
14 | simpl 482 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 𝑛 ∈ On) | |
15 | c0ex 11253 | . . . . . . . . 9 ⊢ 0 ∈ V | |
16 | 15 | prid1 4767 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ {0, 1}) |
18 | 13, 17 | sseldd 3996 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ (𝐶‘𝑛)) |
19 | 10, 14, 18 | constrsslem 33746 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → (𝐶‘𝑛) ⊆ (𝐶‘suc 𝑛)) |
20 | 13, 19 | sstrd 4006 | . . . 4 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘suc 𝑛)) |
21 | 20 | ex 412 | . . 3 ⊢ (𝑛 ∈ On → ({0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘suc 𝑛))) |
22 | 0ellim 6449 | . . . . . 6 ⊢ (Lim 𝑚 → ∅ ∈ 𝑚) | |
23 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = (𝐶‘∅)) | |
24 | 23, 11 | eqtrdi 2791 | . . . . . . 7 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = {0, 1}) |
25 | 24 | ssiun2s 5053 | . . . . . 6 ⊢ (∅ ∈ 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
26 | 22, 25 | syl 17 | . . . . 5 ⊢ (Lim 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
27 | vex 3482 | . . . . . . 7 ⊢ 𝑚 ∈ V | |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (Lim 𝑚 → 𝑚 ∈ V) |
29 | id 22 | . . . . . 6 ⊢ (Lim 𝑚 → Lim 𝑚) | |
30 | 10, 28, 29 | constrlim 33744 | . . . . 5 ⊢ (Lim 𝑚 → (𝐶‘𝑚) = ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
31 | 26, 30 | sseqtrrd 4037 | . . . 4 ⊢ (Lim 𝑚 → {0, 1} ⊆ (𝐶‘𝑚)) |
32 | 31 | a1d 25 | . . 3 ⊢ (Lim 𝑚 → (∀𝑛 ∈ 𝑚 {0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘𝑚))) |
33 | 3, 5, 7, 9, 12, 21, 32 | tfinds 7881 | . 2 ⊢ (𝑁 ∈ On → {0, 1} ⊆ (𝐶‘𝑁)) |
34 | 1, 33 | syl 17 | 1 ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 {cpr 4633 ∪ ciun 4996 ↦ cmpt 5231 Oncon0 6386 Lim wlim 6387 suc csuc 6388 ‘cfv 6563 (class class class)co 7431 reccrdg 8448 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 ∗ccj 15132 ℑcim 15134 abscabs 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 |
This theorem is referenced by: constrss 33748 constrelextdg2 33752 |
Copyright terms: Public domain | W3C validator |