![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > constr01 | Structured version Visualization version GIF version |
Description: 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
Ref | Expression |
---|---|
constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
constrsscn.1 | ⊢ (𝜑 → 𝑁 ∈ On) |
Ref | Expression |
---|---|
constr01 | ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constrsscn.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ On) | |
2 | fveq2 6893 | . . . 4 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
3 | 2 | sseq2d 4011 | . . 3 ⊢ (𝑚 = ∅ → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘∅))) |
4 | fveq2 6893 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
5 | 4 | sseq2d 4011 | . . 3 ⊢ (𝑚 = 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑛))) |
6 | fveq2 6893 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
7 | 6 | sseq2d 4011 | . . 3 ⊢ (𝑚 = suc 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘suc 𝑛))) |
8 | fveq2 6893 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
9 | 8 | sseq2d 4011 | . . 3 ⊢ (𝑚 = 𝑁 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑁))) |
10 | constr0.1 | . . . . 5 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
11 | 10 | constr0 33609 | . . . 4 ⊢ (𝐶‘∅) = {0, 1} |
12 | 11 | eqimss2i 4040 | . . 3 ⊢ {0, 1} ⊆ (𝐶‘∅) |
13 | simpr 483 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘𝑛)) | |
14 | simpl 481 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 𝑛 ∈ On) | |
15 | c0ex 11249 | . . . . . . . . 9 ⊢ 0 ∈ V | |
16 | 15 | prid1 4761 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ {0, 1}) |
18 | 13, 17 | sseldd 3979 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ (𝐶‘𝑛)) |
19 | 10, 14, 18 | constrsslem 33613 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → (𝐶‘𝑛) ⊆ (𝐶‘suc 𝑛)) |
20 | 13, 19 | sstrd 3989 | . . . 4 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘suc 𝑛)) |
21 | 20 | ex 411 | . . 3 ⊢ (𝑛 ∈ On → ({0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘suc 𝑛))) |
22 | 0ellim 6431 | . . . . . 6 ⊢ (Lim 𝑚 → ∅ ∈ 𝑚) | |
23 | fveq2 6893 | . . . . . . . 8 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = (𝐶‘∅)) | |
24 | 23, 11 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = {0, 1}) |
25 | 24 | ssiun2s 5048 | . . . . . 6 ⊢ (∅ ∈ 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
26 | 22, 25 | syl 17 | . . . . 5 ⊢ (Lim 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
27 | vex 3466 | . . . . . . 7 ⊢ 𝑚 ∈ V | |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (Lim 𝑚 → 𝑚 ∈ V) |
29 | id 22 | . . . . . 6 ⊢ (Lim 𝑚 → Lim 𝑚) | |
30 | 10, 28, 29 | constrlim 33611 | . . . . 5 ⊢ (Lim 𝑚 → (𝐶‘𝑚) = ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
31 | 26, 30 | sseqtrrd 4020 | . . . 4 ⊢ (Lim 𝑚 → {0, 1} ⊆ (𝐶‘𝑚)) |
32 | 31 | a1d 25 | . . 3 ⊢ (Lim 𝑚 → (∀𝑛 ∈ 𝑚 {0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘𝑚))) |
33 | 3, 5, 7, 9, 12, 21, 32 | tfinds 7862 | . 2 ⊢ (𝑁 ∈ On → {0, 1} ⊆ (𝐶‘𝑁)) |
34 | 1, 33 | syl 17 | 1 ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ w3o 1083 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3419 Vcvv 3462 ⊆ wss 3946 ∅c0 4322 {cpr 4625 ∪ ciun 4993 ↦ cmpt 5228 Oncon0 6368 Lim wlim 6369 suc csuc 6370 ‘cfv 6546 (class class class)co 7416 reccrdg 8431 ℂcc 11147 ℝcr 11148 0cc0 11149 1c1 11150 + caddc 11152 · cmul 11154 − cmin 11485 ∗ccj 15096 ℑcim 15098 abscabs 15234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-ltxr 11294 df-sub 11487 |
This theorem is referenced by: constrss 33615 constrelextdg2 33619 |
Copyright terms: Public domain | W3C validator |