| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constr01 | Structured version Visualization version GIF version | ||
| Description: 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| Ref | Expression |
|---|---|
| constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| constrsscn.1 | ⊢ (𝜑 → 𝑁 ∈ On) |
| Ref | Expression |
|---|---|
| constr01 | ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrsscn.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ On) | |
| 2 | fveq2 6865 | . . . 4 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
| 3 | 2 | sseq2d 3987 | . . 3 ⊢ (𝑚 = ∅ → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘∅))) |
| 4 | fveq2 6865 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
| 5 | 4 | sseq2d 3987 | . . 3 ⊢ (𝑚 = 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑛))) |
| 6 | fveq2 6865 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
| 7 | 6 | sseq2d 3987 | . . 3 ⊢ (𝑚 = suc 𝑛 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘suc 𝑛))) |
| 8 | fveq2 6865 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
| 9 | 8 | sseq2d 3987 | . . 3 ⊢ (𝑚 = 𝑁 → ({0, 1} ⊆ (𝐶‘𝑚) ↔ {0, 1} ⊆ (𝐶‘𝑁))) |
| 10 | constr0.1 | . . . . 5 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 11 | 10 | constr0 33735 | . . . 4 ⊢ (𝐶‘∅) = {0, 1} |
| 12 | 11 | eqimss2i 4016 | . . 3 ⊢ {0, 1} ⊆ (𝐶‘∅) |
| 13 | simpr 484 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘𝑛)) | |
| 14 | simpl 482 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 𝑛 ∈ On) | |
| 15 | c0ex 11186 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 16 | 15 | prid1 4734 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
| 17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ {0, 1}) |
| 18 | 13, 17 | sseldd 3955 | . . . . . 6 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → 0 ∈ (𝐶‘𝑛)) |
| 19 | 10, 14, 18 | constrsslem 33739 | . . . . 5 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → (𝐶‘𝑛) ⊆ (𝐶‘suc 𝑛)) |
| 20 | 13, 19 | sstrd 3965 | . . . 4 ⊢ ((𝑛 ∈ On ∧ {0, 1} ⊆ (𝐶‘𝑛)) → {0, 1} ⊆ (𝐶‘suc 𝑛)) |
| 21 | 20 | ex 412 | . . 3 ⊢ (𝑛 ∈ On → ({0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘suc 𝑛))) |
| 22 | 0ellim 6404 | . . . . . 6 ⊢ (Lim 𝑚 → ∅ ∈ 𝑚) | |
| 23 | fveq2 6865 | . . . . . . . 8 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = (𝐶‘∅)) | |
| 24 | 23, 11 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑜 = ∅ → (𝐶‘𝑜) = {0, 1}) |
| 25 | 24 | ssiun2s 5020 | . . . . . 6 ⊢ (∅ ∈ 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
| 26 | 22, 25 | syl 17 | . . . . 5 ⊢ (Lim 𝑚 → {0, 1} ⊆ ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
| 27 | vex 3459 | . . . . . . 7 ⊢ 𝑚 ∈ V | |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (Lim 𝑚 → 𝑚 ∈ V) |
| 29 | id 22 | . . . . . 6 ⊢ (Lim 𝑚 → Lim 𝑚) | |
| 30 | 10, 28, 29 | constrlim 33737 | . . . . 5 ⊢ (Lim 𝑚 → (𝐶‘𝑚) = ∪ 𝑜 ∈ 𝑚 (𝐶‘𝑜)) |
| 31 | 26, 30 | sseqtrrd 3992 | . . . 4 ⊢ (Lim 𝑚 → {0, 1} ⊆ (𝐶‘𝑚)) |
| 32 | 31 | a1d 25 | . . 3 ⊢ (Lim 𝑚 → (∀𝑛 ∈ 𝑚 {0, 1} ⊆ (𝐶‘𝑛) → {0, 1} ⊆ (𝐶‘𝑚))) |
| 33 | 3, 5, 7, 9, 12, 21, 32 | tfinds 7844 | . 2 ⊢ (𝑁 ∈ On → {0, 1} ⊆ (𝐶‘𝑁)) |
| 34 | 1, 33 | syl 17 | 1 ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ∃wrex 3055 {crab 3411 Vcvv 3455 ⊆ wss 3922 ∅c0 4304 {cpr 4599 ∪ ciun 4963 ↦ cmpt 5196 Oncon0 6340 Lim wlim 6341 suc csuc 6342 ‘cfv 6519 (class class class)co 7394 reccrdg 8386 ℂcc 11084 ℝcr 11085 0cc0 11086 1c1 11087 + caddc 11089 · cmul 11091 − cmin 11423 ∗ccj 15072 ℑcim 15074 abscabs 15210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-ltxr 11231 df-sub 11425 |
| This theorem is referenced by: constrss 33741 constrelextdg2 33745 constrextdg2lem 33746 |
| Copyright terms: Public domain | W3C validator |