Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > deccarry | Structured version Visualization version GIF version |
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12478, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.) |
Ref | Expression |
---|---|
deccarry | ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12438 | . 2 ⊢ ;(𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0) | |
2 | 9nn 12071 | . . . . . . . 8 ⊢ 9 ∈ ℕ | |
3 | peano2nn 11985 | . . . . . . . 8 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (9 + 1) ∈ ℕ |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ) |
6 | peano2nn 11985 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
7 | 5, 6 | nnmulcld 12026 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ) |
8 | 7 | nncnd 11989 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ) |
9 | 8 | addid1d 11175 | . . 3 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1))) |
10 | 4 | nncni 11983 | . . . . . 6 ⊢ (9 + 1) ∈ ℂ |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ) |
12 | nncn 11981 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
13 | 1cnd 10970 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 1 ∈ ℂ) | |
14 | 11, 12, 13 | adddid 10999 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1))) |
15 | 11 | mulid1d 10992 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1)) |
16 | 15 | oveq2d 7291 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1))) |
17 | df-dec 12438 | . . . . . . 7 ⊢ ;𝐴9 = (((9 + 1) · 𝐴) + 9) | |
18 | 17 | oveq1i 7285 | . . . . . 6 ⊢ (;𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1) |
19 | id 22 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ) | |
20 | 5, 19 | nnmulcld 12026 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ) |
21 | 20 | nncnd 11989 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ) |
22 | 2 | nncni 11983 | . . . . . . . 8 ⊢ 9 ∈ ℂ |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 9 ∈ ℂ) |
24 | 21, 23, 13 | addassd 10997 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1))) |
25 | 18, 24 | eqtr2id 2791 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (;𝐴9 + 1)) |
26 | 16, 25 | eqtrd 2778 | . . . 4 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (;𝐴9 + 1)) |
27 | 14, 26 | eqtrd 2778 | . . 3 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (;𝐴9 + 1)) |
28 | 9, 27 | eqtrd 2778 | . 2 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (;𝐴9 + 1)) |
29 | 1, 28 | eqtr2id 2791 | 1 ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ℕcn 11973 9c9 12035 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |