Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deccarry Structured version   Visualization version   GIF version

Theorem deccarry 44691
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12407, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (999 + 1) = 1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.)
Assertion
Ref Expression
deccarry (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)

Proof of Theorem deccarry
StepHypRef Expression
1 df-dec 12367 . 2 (𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0)
2 9nn 12001 . . . . . . . 8 9 ∈ ℕ
3 peano2nn 11915 . . . . . . . 8 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . . . . . . 7 (9 + 1) ∈ ℕ
54a1i 11 . . . . . 6 (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ)
6 peano2nn 11915 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
75, 6nnmulcld 11956 . . . . 5 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ)
87nncnd 11919 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ)
98addid1d 11105 . . 3 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1)))
104nncni 11913 . . . . . 6 (9 + 1) ∈ ℂ
1110a1i 11 . . . . 5 (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ)
12 nncn 11911 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
13 1cnd 10901 . . . . 5 (𝐴 ∈ ℕ → 1 ∈ ℂ)
1411, 12, 13adddid 10930 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1)))
1511mulid1d 10923 . . . . . 6 (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1))
1615oveq2d 7271 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1)))
17 df-dec 12367 . . . . . . 7 𝐴9 = (((9 + 1) · 𝐴) + 9)
1817oveq1i 7265 . . . . . 6 (𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1)
19 id 22 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
205, 19nnmulcld 11956 . . . . . . . 8 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ)
2120nncnd 11919 . . . . . . 7 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ)
222nncni 11913 . . . . . . . 8 9 ∈ ℂ
2322a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 9 ∈ ℂ)
2421, 23, 13addassd 10928 . . . . . 6 (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1)))
2518, 24eqtr2id 2792 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (𝐴9 + 1))
2616, 25eqtrd 2778 . . . 4 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (𝐴9 + 1))
2714, 26eqtrd 2778 . . 3 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (𝐴9 + 1))
289, 27eqtrd 2778 . 2 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (𝐴9 + 1))
291, 28eqtr2id 2792 1 (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cn 11903  9c9 11965  cdc 12366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-dec 12367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator