Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deccarry Structured version   Visualization version   GIF version

Theorem deccarry 47295
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12632, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (999 + 1) = 1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.)
Assertion
Ref Expression
deccarry (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)

Proof of Theorem deccarry
StepHypRef Expression
1 df-dec 12592 . 2 (𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0)
2 9nn 12226 . . . . . . . 8 9 ∈ ℕ
3 peano2nn 12140 . . . . . . . 8 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . . . . . . 7 (9 + 1) ∈ ℕ
54a1i 11 . . . . . 6 (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ)
6 peano2nn 12140 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
75, 6nnmulcld 12181 . . . . 5 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ)
87nncnd 12144 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ)
98addridd 11316 . . 3 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1)))
104nncni 12138 . . . . . 6 (9 + 1) ∈ ℂ
1110a1i 11 . . . . 5 (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ)
12 nncn 12136 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
13 1cnd 11110 . . . . 5 (𝐴 ∈ ℕ → 1 ∈ ℂ)
1411, 12, 13adddid 11139 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1)))
1511mulridd 11132 . . . . . 6 (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1))
1615oveq2d 7365 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1)))
17 df-dec 12592 . . . . . . 7 𝐴9 = (((9 + 1) · 𝐴) + 9)
1817oveq1i 7359 . . . . . 6 (𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1)
19 id 22 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
205, 19nnmulcld 12181 . . . . . . . 8 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ)
2120nncnd 12144 . . . . . . 7 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ)
222nncni 12138 . . . . . . . 8 9 ∈ ℂ
2322a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 9 ∈ ℂ)
2421, 23, 13addassd 11137 . . . . . 6 (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1)))
2518, 24eqtr2id 2777 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (𝐴9 + 1))
2616, 25eqtrd 2764 . . . 4 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (𝐴9 + 1))
2714, 26eqtrd 2764 . . 3 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (𝐴9 + 1))
289, 27eqtrd 2764 . 2 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (𝐴9 + 1))
291, 28eqtr2id 2777 1 (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cn 12128  9c9 12190  cdc 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-dec 12592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator