Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deccarry Structured version   Visualization version   GIF version

Theorem deccarry 47226
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12799, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (999 + 1) = 1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.)
Assertion
Ref Expression
deccarry (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)

Proof of Theorem deccarry
StepHypRef Expression
1 df-dec 12759 . 2 (𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0)
2 9nn 12391 . . . . . . . 8 9 ∈ ℕ
3 peano2nn 12305 . . . . . . . 8 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . . . . . . 7 (9 + 1) ∈ ℕ
54a1i 11 . . . . . 6 (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ)
6 peano2nn 12305 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
75, 6nnmulcld 12346 . . . . 5 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ)
87nncnd 12309 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ)
98addridd 11490 . . 3 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1)))
104nncni 12303 . . . . . 6 (9 + 1) ∈ ℂ
1110a1i 11 . . . . 5 (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ)
12 nncn 12301 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
13 1cnd 11285 . . . . 5 (𝐴 ∈ ℕ → 1 ∈ ℂ)
1411, 12, 13adddid 11314 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1)))
1511mulridd 11307 . . . . . 6 (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1))
1615oveq2d 7464 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1)))
17 df-dec 12759 . . . . . . 7 𝐴9 = (((9 + 1) · 𝐴) + 9)
1817oveq1i 7458 . . . . . 6 (𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1)
19 id 22 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
205, 19nnmulcld 12346 . . . . . . . 8 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ)
2120nncnd 12309 . . . . . . 7 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ)
222nncni 12303 . . . . . . . 8 9 ∈ ℂ
2322a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 9 ∈ ℂ)
2421, 23, 13addassd 11312 . . . . . 6 (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1)))
2518, 24eqtr2id 2793 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (𝐴9 + 1))
2616, 25eqtrd 2780 . . . 4 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (𝐴9 + 1))
2714, 26eqtrd 2780 . . 3 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (𝐴9 + 1))
289, 27eqtrd 2780 . 2 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (𝐴9 + 1))
291, 28eqtr2id 2793 1 (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  9c9 12355  cdc 12758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator