Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deccarry Structured version   Visualization version   GIF version

Theorem deccarry 44236
 Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12178, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.)
Assertion
Ref Expression
deccarry (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)

Proof of Theorem deccarry
StepHypRef Expression
1 df-dec 12138 . 2 (𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0)
2 9nn 11772 . . . . . . . 8 9 ∈ ℕ
3 peano2nn 11686 . . . . . . . 8 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . . . . . . 7 (9 + 1) ∈ ℕ
54a1i 11 . . . . . 6 (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ)
6 peano2nn 11686 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
75, 6nnmulcld 11727 . . . . 5 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ)
87nncnd 11690 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ)
98addid1d 10878 . . 3 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1)))
104nncni 11684 . . . . . 6 (9 + 1) ∈ ℂ
1110a1i 11 . . . . 5 (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ)
12 nncn 11682 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
13 1cnd 10674 . . . . 5 (𝐴 ∈ ℕ → 1 ∈ ℂ)
1411, 12, 13adddid 10703 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1)))
1511mulid1d 10696 . . . . . 6 (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1))
1615oveq2d 7166 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1)))
17 df-dec 12138 . . . . . . 7 𝐴9 = (((9 + 1) · 𝐴) + 9)
1817oveq1i 7160 . . . . . 6 (𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1)
19 id 22 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
205, 19nnmulcld 11727 . . . . . . . 8 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ)
2120nncnd 11690 . . . . . . 7 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ)
222nncni 11684 . . . . . . . 8 9 ∈ ℂ
2322a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 9 ∈ ℂ)
2421, 23, 13addassd 10701 . . . . . 6 (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1)))
2518, 24syl5req 2806 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (𝐴9 + 1))
2616, 25eqtrd 2793 . . . 4 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (𝐴9 + 1))
2714, 26eqtrd 2793 . . 3 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (𝐴9 + 1))
289, 27eqtrd 2793 . 2 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (𝐴9 + 1))
291, 28syl5req 2806 1 (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  (class class class)co 7150  ℂcc 10573  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  ℕcn 11674  9c9 11736  ;cdc 12137 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-ltxr 10718  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-dec 12138 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator