| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > deccarry | Structured version Visualization version GIF version | ||
| Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12757, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.) |
| Ref | Expression |
|---|---|
| deccarry | ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12717 | . 2 ⊢ ;(𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0) | |
| 2 | 9nn 12346 | . . . . . . . 8 ⊢ 9 ∈ ℕ | |
| 3 | peano2nn 12260 | . . . . . . . 8 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (9 + 1) ∈ ℕ |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ) |
| 6 | peano2nn 12260 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 7 | 5, 6 | nnmulcld 12301 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ) |
| 8 | 7 | nncnd 12264 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ) |
| 9 | 8 | addridd 11443 | . . 3 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1))) |
| 10 | 4 | nncni 12258 | . . . . . 6 ⊢ (9 + 1) ∈ ℂ |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ) |
| 12 | nncn 12256 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 13 | 1cnd 11238 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 1 ∈ ℂ) | |
| 14 | 11, 12, 13 | adddid 11267 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1))) |
| 15 | 11 | mulridd 11260 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1)) |
| 16 | 15 | oveq2d 7429 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1))) |
| 17 | df-dec 12717 | . . . . . . 7 ⊢ ;𝐴9 = (((9 + 1) · 𝐴) + 9) | |
| 18 | 17 | oveq1i 7423 | . . . . . 6 ⊢ (;𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1) |
| 19 | id 22 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ) | |
| 20 | 5, 19 | nnmulcld 12301 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ) |
| 21 | 20 | nncnd 12264 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ) |
| 22 | 2 | nncni 12258 | . . . . . . . 8 ⊢ 9 ∈ ℂ |
| 23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 9 ∈ ℂ) |
| 24 | 21, 23, 13 | addassd 11265 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1))) |
| 25 | 18, 24 | eqtr2id 2782 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (;𝐴9 + 1)) |
| 26 | 16, 25 | eqtrd 2769 | . . . 4 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (;𝐴9 + 1)) |
| 27 | 14, 26 | eqtrd 2769 | . . 3 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (;𝐴9 + 1)) |
| 28 | 9, 27 | eqtrd 2769 | . 2 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (;𝐴9 + 1)) |
| 29 | 1, 28 | eqtr2id 2782 | 1 ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 ℕcn 12248 9c9 12310 ;cdc 12716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-dec 12717 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |