Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deccarry Structured version   Visualization version   GIF version

Theorem deccarry 44803
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12478, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (999 + 1) = 1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.)
Assertion
Ref Expression
deccarry (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)

Proof of Theorem deccarry
StepHypRef Expression
1 df-dec 12438 . 2 (𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0)
2 9nn 12071 . . . . . . . 8 9 ∈ ℕ
3 peano2nn 11985 . . . . . . . 8 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . . . . . . 7 (9 + 1) ∈ ℕ
54a1i 11 . . . . . 6 (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ)
6 peano2nn 11985 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
75, 6nnmulcld 12026 . . . . 5 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ)
87nncnd 11989 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ)
98addid1d 11175 . . 3 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1)))
104nncni 11983 . . . . . 6 (9 + 1) ∈ ℂ
1110a1i 11 . . . . 5 (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ)
12 nncn 11981 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
13 1cnd 10970 . . . . 5 (𝐴 ∈ ℕ → 1 ∈ ℂ)
1411, 12, 13adddid 10999 . . . 4 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1)))
1511mulid1d 10992 . . . . . 6 (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1))
1615oveq2d 7291 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1)))
17 df-dec 12438 . . . . . . 7 𝐴9 = (((9 + 1) · 𝐴) + 9)
1817oveq1i 7285 . . . . . 6 (𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1)
19 id 22 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
205, 19nnmulcld 12026 . . . . . . . 8 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ)
2120nncnd 11989 . . . . . . 7 (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ)
222nncni 11983 . . . . . . . 8 9 ∈ ℂ
2322a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 9 ∈ ℂ)
2421, 23, 13addassd 10997 . . . . . 6 (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1)))
2518, 24eqtr2id 2791 . . . . 5 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (𝐴9 + 1))
2616, 25eqtrd 2778 . . . 4 (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (𝐴9 + 1))
2714, 26eqtrd 2778 . . 3 (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (𝐴9 + 1))
289, 27eqtrd 2778 . 2 (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (𝐴9 + 1))
291, 28eqtr2id 2791 1 (𝐴 ∈ ℕ → (𝐴9 + 1) = (𝐴 + 1)0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cn 11973  9c9 12035  cdc 12437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-dec 12438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator