![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > deccarry | Structured version Visualization version GIF version |
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 12799, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.) |
Ref | Expression |
---|---|
deccarry | ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12759 | . 2 ⊢ ;(𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0) | |
2 | 9nn 12391 | . . . . . . . 8 ⊢ 9 ∈ ℕ | |
3 | peano2nn 12305 | . . . . . . . 8 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (9 + 1) ∈ ℕ |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ) |
6 | peano2nn 12305 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
7 | 5, 6 | nnmulcld 12346 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ) |
8 | 7 | nncnd 12309 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ) |
9 | 8 | addridd 11490 | . . 3 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1))) |
10 | 4 | nncni 12303 | . . . . . 6 ⊢ (9 + 1) ∈ ℂ |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ) |
12 | nncn 12301 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
13 | 1cnd 11285 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 1 ∈ ℂ) | |
14 | 11, 12, 13 | adddid 11314 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1))) |
15 | 11 | mulridd 11307 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1)) |
16 | 15 | oveq2d 7464 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1))) |
17 | df-dec 12759 | . . . . . . 7 ⊢ ;𝐴9 = (((9 + 1) · 𝐴) + 9) | |
18 | 17 | oveq1i 7458 | . . . . . 6 ⊢ (;𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1) |
19 | id 22 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ) | |
20 | 5, 19 | nnmulcld 12346 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ) |
21 | 20 | nncnd 12309 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ) |
22 | 2 | nncni 12303 | . . . . . . . 8 ⊢ 9 ∈ ℂ |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 9 ∈ ℂ) |
24 | 21, 23, 13 | addassd 11312 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1))) |
25 | 18, 24 | eqtr2id 2793 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (;𝐴9 + 1)) |
26 | 16, 25 | eqtrd 2780 | . . . 4 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (;𝐴9 + 1)) |
27 | 14, 26 | eqtrd 2780 | . . 3 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (;𝐴9 + 1)) |
28 | 9, 27 | eqtrd 2780 | . 2 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (;𝐴9 + 1)) |
29 | 1, 28 | eqtr2id 2793 | 1 ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℕcn 12293 9c9 12355 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |