MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgssv2 Structured version   Visualization version   GIF version

Theorem edgssv2 29224
Description: An edge of a simple graph is an unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.)
Hypotheses
Ref Expression
edgssv2.v 𝑉 = (Vtx‘𝐺)
edgssv2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
edgssv2 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → (𝐶𝑉 ∧ (♯‘𝐶) = 2))

Proof of Theorem edgssv2
StepHypRef Expression
1 edgssv2.e . . . . 5 𝐸 = (Edg‘𝐺)
21eleq2i 2830 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
3 edgusgr 29186 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
42, 3sylan2b 593 . . 3 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
5 elpwi 4629 . . . 4 (𝐶 ∈ 𝒫 (Vtx‘𝐺) → 𝐶 ⊆ (Vtx‘𝐺))
65anim1i 614 . . 3 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝐶 ⊆ (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
74, 6syl 17 . 2 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → (𝐶 ⊆ (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
8 edgssv2.v . . . . 5 𝑉 = (Vtx‘𝐺)
98a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → 𝑉 = (Vtx‘𝐺))
109sseq2d 4035 . . 3 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → (𝐶𝑉𝐶 ⊆ (Vtx‘𝐺)))
1110anbi1d 630 . 2 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → ((𝐶𝑉 ∧ (♯‘𝐶) = 2) ↔ (𝐶 ⊆ (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)))
127, 11mpbird 257 1 ((𝐺 ∈ USGraph ∧ 𝐶𝐸) → (𝐶𝑉 ∧ (♯‘𝐶) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  wss 3970  𝒫 cpw 4622  cfv 6572  2c2 12344  chash 14375  Vtxcvtx 29022  Edgcedg 29073  USGraphcusgr 29175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-hash 14376  df-edg 29074  df-usgr 29177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator