MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrnbcnvfv Structured version   Visualization version   GIF version

Theorem usgrnbcnvfv 29336
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.)
Hypothesis
Ref Expression
usgrnbcnvfv.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrnbcnvfv ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})

Proof of Theorem usgrnbcnvfv
StepHypRef Expression
1 usgrnbcnvfv.i . . 3 𝐼 = (iEdg‘𝐺)
21usgrf1o 29142 . 2 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
3 prcom 4683 . . 3 {𝑁, 𝐾} = {𝐾, 𝑁}
4 eqid 2730 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
54nbusgreledg 29324 . . . . 5 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ (Edg‘𝐺)))
6 edgval 29020 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
71eqcomi 2739 . . . . . . . . 9 (iEdg‘𝐺) = 𝐼
87rneqi 5874 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐼
96, 8eqtri 2753 . . . . . . 7 (Edg‘𝐺) = ran 𝐼
109a1i 11 . . . . . 6 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
1110eleq2d 2815 . . . . 5 (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ (Edg‘𝐺) ↔ {𝑁, 𝐾} ∈ ran 𝐼))
125, 11bitrd 279 . . . 4 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ ran 𝐼))
1312biimpa 476 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑁, 𝐾} ∈ ran 𝐼)
143, 13eqeltrrid 2834 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝐾, 𝑁} ∈ ran 𝐼)
15 f1ocnvfv2 7206 . 2 ((𝐼:dom 𝐼1-1-onto→ran 𝐼 ∧ {𝐾, 𝑁} ∈ ran 𝐼) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})
162, 14, 15syl2an2r 685 1 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  {cpr 4576  ccnv 5613  dom cdm 5614  ran crn 5615  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  iEdgciedg 28968  Edgcedg 29018  USGraphcusgr 29120   NeighbVtx cnbgr 29303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-hash 14230  df-edg 29019  df-upgr 29053  df-umgr 29054  df-usgr 29122  df-nbgr 29304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator