| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrnbcnvfv | Structured version Visualization version GIF version | ||
| Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrnbcnvfv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrnbcnvfv | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnbcnvfv.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | usgrf1o 29153 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 3 | prcom 4692 | . . 3 ⊢ {𝑁, 𝐾} = {𝐾, 𝑁} | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 5 | 4 | nbusgreledg 29335 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ (Edg‘𝐺))) |
| 6 | edgval 29031 | . . . . . . . 8 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 7 | 1 | eqcomi 2738 | . . . . . . . . 9 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5891 | . . . . . . . 8 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 6, 8 | eqtri 2752 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran 𝐼 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
| 11 | 10 | eleq2d 2814 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ (Edg‘𝐺) ↔ {𝑁, 𝐾} ∈ ran 𝐼)) |
| 12 | 5, 11 | bitrd 279 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ ran 𝐼)) |
| 13 | 12 | biimpa 476 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑁, 𝐾} ∈ ran 𝐼) |
| 14 | 3, 13 | eqeltrrid 2833 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝐾, 𝑁} ∈ ran 𝐼) |
| 15 | f1ocnvfv2 7235 | . 2 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ {𝐾, 𝑁} ∈ ran 𝐼) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) | |
| 16 | 2, 14, 15 | syl2an2r 685 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4587 ◡ccnv 5630 dom cdm 5631 ran crn 5632 –1-1-onto→wf1o 6499 ‘cfv 6500 (class class class)co 7370 iEdgciedg 28979 Edgcedg 29029 USGraphcusgr 29131 NeighbVtx cnbgr 29314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-dju 9833 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-n0 12422 df-xnn0 12495 df-z 12509 df-uz 12773 df-fz 13448 df-hash 14275 df-edg 29030 df-upgr 29064 df-umgr 29065 df-usgr 29133 df-nbgr 29315 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |