![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrnbcnvfv | Structured version Visualization version GIF version |
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.) |
Ref | Expression |
---|---|
usgrnbcnvfv.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
usgrnbcnvfv | β’ ((πΊ β USGraph β§ π β (πΊ NeighbVtx πΎ)) β (πΌβ(β‘πΌβ{πΎ, π})) = {πΎ, π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrnbcnvfv.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
2 | 1 | usgrf1o 28699 | . 2 β’ (πΊ β USGraph β πΌ:dom πΌβ1-1-ontoβran πΌ) |
3 | prcom 4736 | . . 3 β’ {π, πΎ} = {πΎ, π} | |
4 | eqid 2731 | . . . . . 6 β’ (EdgβπΊ) = (EdgβπΊ) | |
5 | 4 | nbusgreledg 28878 | . . . . 5 β’ (πΊ β USGraph β (π β (πΊ NeighbVtx πΎ) β {π, πΎ} β (EdgβπΊ))) |
6 | edgval 28577 | . . . . . . . 8 β’ (EdgβπΊ) = ran (iEdgβπΊ) | |
7 | 1 | eqcomi 2740 | . . . . . . . . 9 β’ (iEdgβπΊ) = πΌ |
8 | 7 | rneqi 5936 | . . . . . . . 8 β’ ran (iEdgβπΊ) = ran πΌ |
9 | 6, 8 | eqtri 2759 | . . . . . . 7 β’ (EdgβπΊ) = ran πΌ |
10 | 9 | a1i 11 | . . . . . 6 β’ (πΊ β USGraph β (EdgβπΊ) = ran πΌ) |
11 | 10 | eleq2d 2818 | . . . . 5 β’ (πΊ β USGraph β ({π, πΎ} β (EdgβπΊ) β {π, πΎ} β ran πΌ)) |
12 | 5, 11 | bitrd 279 | . . . 4 β’ (πΊ β USGraph β (π β (πΊ NeighbVtx πΎ) β {π, πΎ} β ran πΌ)) |
13 | 12 | biimpa 476 | . . 3 β’ ((πΊ β USGraph β§ π β (πΊ NeighbVtx πΎ)) β {π, πΎ} β ran πΌ) |
14 | 3, 13 | eqeltrrid 2837 | . 2 β’ ((πΊ β USGraph β§ π β (πΊ NeighbVtx πΎ)) β {πΎ, π} β ran πΌ) |
15 | f1ocnvfv2 7278 | . 2 β’ ((πΌ:dom πΌβ1-1-ontoβran πΌ β§ {πΎ, π} β ran πΌ) β (πΌβ(β‘πΌβ{πΎ, π})) = {πΎ, π}) | |
16 | 2, 14, 15 | syl2an2r 682 | 1 β’ ((πΊ β USGraph β§ π β (πΊ NeighbVtx πΎ)) β (πΌβ(β‘πΌβ{πΎ, π})) = {πΎ, π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {cpr 4630 β‘ccnv 5675 dom cdm 5676 ran crn 5677 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 iEdgciedg 28525 Edgcedg 28575 USGraphcusgr 28677 NeighbVtx cnbgr 28857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-edg 28576 df-upgr 28610 df-umgr 28611 df-usgr 28679 df-nbgr 28858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |