| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrnbcnvfv | Structured version Visualization version GIF version | ||
| Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrnbcnvfv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrnbcnvfv | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnbcnvfv.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | usgrf1o 29142 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 3 | prcom 4683 | . . 3 ⊢ {𝑁, 𝐾} = {𝐾, 𝑁} | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 5 | 4 | nbusgreledg 29324 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ (Edg‘𝐺))) |
| 6 | edgval 29020 | . . . . . . . 8 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 7 | 1 | eqcomi 2739 | . . . . . . . . 9 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5874 | . . . . . . . 8 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 6, 8 | eqtri 2753 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran 𝐼 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
| 11 | 10 | eleq2d 2815 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ (Edg‘𝐺) ↔ {𝑁, 𝐾} ∈ ran 𝐼)) |
| 12 | 5, 11 | bitrd 279 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ ran 𝐼)) |
| 13 | 12 | biimpa 476 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑁, 𝐾} ∈ ran 𝐼) |
| 14 | 3, 13 | eqeltrrid 2834 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝐾, 𝑁} ∈ ran 𝐼) |
| 15 | f1ocnvfv2 7206 | . 2 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ {𝐾, 𝑁} ∈ ran 𝐼) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) | |
| 16 | 2, 14, 15 | syl2an2r 685 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cpr 4576 ◡ccnv 5613 dom cdm 5614 ran crn 5615 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 iEdgciedg 28968 Edgcedg 29018 USGraphcusgr 29120 NeighbVtx cnbgr 29303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-hash 14230 df-edg 29019 df-upgr 29053 df-umgr 29054 df-usgr 29122 df-nbgr 29304 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |