Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrnbcnvfv | Structured version Visualization version GIF version |
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.) |
Ref | Expression |
---|---|
usgrnbcnvfv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgrnbcnvfv | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrnbcnvfv.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | usgrf1o 27116 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
3 | prcom 4624 | . . 3 ⊢ {𝑁, 𝐾} = {𝐾, 𝑁} | |
4 | eqid 2738 | . . . . . 6 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
5 | 4 | nbusgreledg 27295 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ (Edg‘𝐺))) |
6 | edgval 26994 | . . . . . . . 8 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
7 | 1 | eqcomi 2747 | . . . . . . . . 9 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5781 | . . . . . . . 8 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 6, 8 | eqtri 2761 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran 𝐼 |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
11 | 10 | eleq2d 2818 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ (Edg‘𝐺) ↔ {𝑁, 𝐾} ∈ ran 𝐼)) |
12 | 5, 11 | bitrd 282 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ ran 𝐼)) |
13 | 12 | biimpa 480 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑁, 𝐾} ∈ ran 𝐼) |
14 | 3, 13 | eqeltrrid 2838 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝐾, 𝑁} ∈ ran 𝐼) |
15 | f1ocnvfv2 7046 | . 2 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ {𝐾, 𝑁} ∈ ran 𝐼) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) | |
16 | 2, 14, 15 | syl2an2r 685 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(◡𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 {cpr 4519 ◡ccnv 5525 dom cdm 5526 ran crn 5527 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7171 iEdgciedg 26942 Edgcedg 26992 USGraphcusgr 27094 NeighbVtx cnbgr 27274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-1st 7715 df-2nd 7716 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-2o 8133 df-oadd 8136 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-fin 8560 df-dju 9404 df-card 9442 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-nn 11718 df-2 11780 df-n0 11978 df-xnn0 12050 df-z 12064 df-uz 12326 df-fz 12983 df-hash 13784 df-edg 26993 df-upgr 27027 df-umgr 27028 df-usgr 27096 df-nbgr 27275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |