MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrnbcnvfv Structured version   Visualization version   GIF version

Theorem usgrnbcnvfv 29397
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.)
Hypothesis
Ref Expression
usgrnbcnvfv.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrnbcnvfv ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})

Proof of Theorem usgrnbcnvfv
StepHypRef Expression
1 usgrnbcnvfv.i . . 3 𝐼 = (iEdg‘𝐺)
21usgrf1o 29203 . 2 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
3 prcom 4737 . . 3 {𝑁, 𝐾} = {𝐾, 𝑁}
4 eqid 2735 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
54nbusgreledg 29385 . . . . 5 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ (Edg‘𝐺)))
6 edgval 29081 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
71eqcomi 2744 . . . . . . . . 9 (iEdg‘𝐺) = 𝐼
87rneqi 5951 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐼
96, 8eqtri 2763 . . . . . . 7 (Edg‘𝐺) = ran 𝐼
109a1i 11 . . . . . 6 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
1110eleq2d 2825 . . . . 5 (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ (Edg‘𝐺) ↔ {𝑁, 𝐾} ∈ ran 𝐼))
125, 11bitrd 279 . . . 4 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ ran 𝐼))
1312biimpa 476 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑁, 𝐾} ∈ ran 𝐼)
143, 13eqeltrrid 2844 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝐾, 𝑁} ∈ ran 𝐼)
15 f1ocnvfv2 7297 . 2 ((𝐼:dom 𝐼1-1-onto→ran 𝐼 ∧ {𝐾, 𝑁} ∈ ran 𝐼) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})
162, 14, 15syl2an2r 685 1 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {cpr 4633  ccnv 5688  dom cdm 5689  ran crn 5690  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  iEdgciedg 29029  Edgcedg 29079  USGraphcusgr 29181   NeighbVtx cnbgr 29364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator