| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3prm | Structured version Visualization version GIF version | ||
| Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3prm | ⊢ 3 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z 12527 | . . 3 ⊢ 3 ∈ ℤ | |
| 2 | 1lt3 12315 | . . 3 ⊢ 1 < 3 | |
| 3 | eluz2b1 12839 | . . 3 ⊢ (3 ∈ (ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 1 < 3)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 3 ∈ (ℤ≥‘2) |
| 5 | elfz1eq 13457 | . . . . 5 ⊢ (𝑧 ∈ (2...2) → 𝑧 = 2) | |
| 6 | n2dvds3 16301 | . . . . . 6 ⊢ ¬ 2 ∥ 3 | |
| 7 | breq1 5098 | . . . . . 6 ⊢ (𝑧 = 2 → (𝑧 ∥ 3 ↔ 2 ∥ 3)) | |
| 8 | 6, 7 | mtbiri 327 | . . . . 5 ⊢ (𝑧 = 2 → ¬ 𝑧 ∥ 3) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑧 ∈ (2...2) → ¬ 𝑧 ∥ 3) |
| 10 | 3m1e2 12270 | . . . . 5 ⊢ (3 − 1) = 2 | |
| 11 | 10 | oveq2i 7364 | . . . 4 ⊢ (2...(3 − 1)) = (2...2) |
| 12 | 9, 11 | eleq2s 2846 | . . 3 ⊢ (𝑧 ∈ (2...(3 − 1)) → ¬ 𝑧 ∥ 3) |
| 13 | 12 | rgen 3046 | . 2 ⊢ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3 |
| 14 | isprm3 16613 | . 2 ⊢ (3 ∈ ℙ ↔ (3 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3)) | |
| 15 | 4, 13, 14 | mpbir2an 711 | 1 ⊢ 3 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1c1 11029 < clt 11168 − cmin 11366 2c2 12202 3c3 12203 ℤcz 12490 ℤ≥cuz 12754 ...cfz 13429 ∥ cdvds 16182 ℙcprime 16601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fz 13430 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-dvds 16183 df-prm 16602 |
| This theorem is referenced by: ge2nprmge4 16631 3lcm2e6 16662 prmo3 16972 4001lem4 17074 lt6abl 19793 2logb9irr 26722 2logb3irr 26724 ppi3 27098 cht3 27100 bpos1 27211 2sqr3nconstr 33767 cos9thpinconstrlem2 33776 fmtno0prm 47562 m2prm 47595 6gbe 47775 7gbow 47776 8gbe 47777 9gbo 47778 11gbo 47779 sbgoldbwt 47781 sbgoldbst 47782 sbgoldbo 47791 nnsum3primesle9 47798 nnsum4primeseven 47804 nnsum4primesevenALTV 47805 zlmodzxznm 48502 |
| Copyright terms: Public domain | W3C validator |