MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3prm Structured version   Visualization version   GIF version

Theorem 3prm 16627
Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
3prm 3 ∈ ℙ

Proof of Theorem 3prm
StepHypRef Expression
1 3z 12591 . . 3 3 ∈ ℤ
2 1lt3 12381 . . 3 1 < 3
3 eluz2b1 12899 . . 3 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 1 < 3))
41, 2, 3mpbir2an 709 . 2 3 ∈ (ℤ‘2)
5 elfz1eq 13508 . . . . 5 (𝑧 ∈ (2...2) → 𝑧 = 2)
6 n2dvds3 16310 . . . . . 6 ¬ 2 ∥ 3
7 breq1 5150 . . . . . 6 (𝑧 = 2 → (𝑧 ∥ 3 ↔ 2 ∥ 3))
86, 7mtbiri 326 . . . . 5 (𝑧 = 2 → ¬ 𝑧 ∥ 3)
95, 8syl 17 . . . 4 (𝑧 ∈ (2...2) → ¬ 𝑧 ∥ 3)
10 3m1e2 12336 . . . . 5 (3 − 1) = 2
1110oveq2i 7416 . . . 4 (2...(3 − 1)) = (2...2)
129, 11eleq2s 2851 . . 3 (𝑧 ∈ (2...(3 − 1)) → ¬ 𝑧 ∥ 3)
1312rgen 3063 . 2 𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3
14 isprm3 16616 . 2 (3 ∈ ℙ ↔ (3 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3))
154, 13, 14mpbir2an 709 1 3 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2106  wral 3061   class class class wbr 5147  cfv 6540  (class class class)co 7405  1c1 11107   < clt 11244  cmin 11440  2c2 12263  3c3 12264  cz 12554  cuz 12818  ...cfz 13480  cdvds 16193  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-prm 16605
This theorem is referenced by:  ge2nprmge4  16634  3lcm2e6  16664  prmo3  16970  4001lem4  17073  lt6abl  19757  2logb9irr  26289  2logb3irr  26291  ppi3  26664  cht3  26666  bpos1  26775  fmtno0prm  46212  m2prm  46245  6gbe  46425  7gbow  46426  8gbe  46427  9gbo  46428  11gbo  46429  sbgoldbwt  46431  sbgoldbst  46432  sbgoldbo  46441  nnsum3primesle9  46448  nnsum4primeseven  46454  nnsum4primesevenALTV  46455  zlmodzxznm  47131
  Copyright terms: Public domain W3C validator