| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fltmul | Structured version Visualization version GIF version | ||
| Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any 𝑁 ∈ ℕ0, so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| fltmul.s | ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| fltmul.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| fltmul.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| fltmul.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| fltmul.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| fltmul.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
| Ref | Expression |
|---|---|
| fltmul | ⊢ (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fltmul.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℂ) | |
| 2 | fltmul.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | expcld 14186 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ∈ ℂ) |
| 4 | fltmul.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | 4, 2 | expcld 14186 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 6 | fltmul.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 7 | 6, 2 | expcld 14186 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℂ) |
| 8 | 3, 5, 7 | adddid 11285 | . . 3 ⊢ (𝜑 → ((𝑆↑𝑁) · ((𝐴↑𝑁) + (𝐵↑𝑁))) = (((𝑆↑𝑁) · (𝐴↑𝑁)) + ((𝑆↑𝑁) · (𝐵↑𝑁)))) |
| 9 | fltmul.1 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
| 10 | 9 | oveq2d 7447 | . . 3 ⊢ (𝜑 → ((𝑆↑𝑁) · ((𝐴↑𝑁) + (𝐵↑𝑁))) = ((𝑆↑𝑁) · (𝐶↑𝑁))) |
| 11 | 8, 10 | eqtr3d 2779 | . 2 ⊢ (𝜑 → (((𝑆↑𝑁) · (𝐴↑𝑁)) + ((𝑆↑𝑁) · (𝐵↑𝑁))) = ((𝑆↑𝑁) · (𝐶↑𝑁))) |
| 12 | 1, 4, 2 | mulexpd 14201 | . . 3 ⊢ (𝜑 → ((𝑆 · 𝐴)↑𝑁) = ((𝑆↑𝑁) · (𝐴↑𝑁))) |
| 13 | 1, 6, 2 | mulexpd 14201 | . . 3 ⊢ (𝜑 → ((𝑆 · 𝐵)↑𝑁) = ((𝑆↑𝑁) · (𝐵↑𝑁))) |
| 14 | 12, 13 | oveq12d 7449 | . 2 ⊢ (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = (((𝑆↑𝑁) · (𝐴↑𝑁)) + ((𝑆↑𝑁) · (𝐵↑𝑁)))) |
| 15 | fltmul.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 16 | 1, 15, 2 | mulexpd 14201 | . 2 ⊢ (𝜑 → ((𝑆 · 𝐶)↑𝑁) = ((𝑆↑𝑁) · (𝐶↑𝑁))) |
| 17 | 11, 14, 16 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 + caddc 11158 · cmul 11160 ℕ0cn0 12526 ↑cexp 14102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-exp 14103 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |