Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltmul Structured version   Visualization version   GIF version

Theorem fltmul 40044
Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any 𝑁 ∈ ℕ0, hence the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
fltmul.s (𝜑𝑆 ∈ ℂ)
fltmul.a (𝜑𝐴 ∈ ℂ)
fltmul.b (𝜑𝐵 ∈ ℂ)
fltmul.c (𝜑𝐶 ∈ ℂ)
fltmul.n (𝜑𝑁 ∈ ℕ0)
fltmul.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
fltmul (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁))

Proof of Theorem fltmul
StepHypRef Expression
1 fltmul.s . . . . 5 (𝜑𝑆 ∈ ℂ)
2 fltmul.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
31, 2expcld 13602 . . . 4 (𝜑 → (𝑆𝑁) ∈ ℂ)
4 fltmul.a . . . . 5 (𝜑𝐴 ∈ ℂ)
54, 2expcld 13602 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℂ)
6 fltmul.b . . . . 5 (𝜑𝐵 ∈ ℂ)
76, 2expcld 13602 . . . 4 (𝜑 → (𝐵𝑁) ∈ ℂ)
83, 5, 7adddid 10743 . . 3 (𝜑 → ((𝑆𝑁) · ((𝐴𝑁) + (𝐵𝑁))) = (((𝑆𝑁) · (𝐴𝑁)) + ((𝑆𝑁) · (𝐵𝑁))))
9 fltmul.1 . . . 4 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
109oveq2d 7186 . . 3 (𝜑 → ((𝑆𝑁) · ((𝐴𝑁) + (𝐵𝑁))) = ((𝑆𝑁) · (𝐶𝑁)))
118, 10eqtr3d 2775 . 2 (𝜑 → (((𝑆𝑁) · (𝐴𝑁)) + ((𝑆𝑁) · (𝐵𝑁))) = ((𝑆𝑁) · (𝐶𝑁)))
121, 4, 2mulexpd 13617 . . 3 (𝜑 → ((𝑆 · 𝐴)↑𝑁) = ((𝑆𝑁) · (𝐴𝑁)))
131, 6, 2mulexpd 13617 . . 3 (𝜑 → ((𝑆 · 𝐵)↑𝑁) = ((𝑆𝑁) · (𝐵𝑁)))
1412, 13oveq12d 7188 . 2 (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = (((𝑆𝑁) · (𝐴𝑁)) + ((𝑆𝑁) · (𝐵𝑁))))
15 fltmul.c . . 3 (𝜑𝐶 ∈ ℂ)
161, 15, 2mulexpd 13617 . 2 (𝜑 → ((𝑆 · 𝐶)↑𝑁) = ((𝑆𝑁) · (𝐶𝑁)))
1711, 14, 163eqtr4d 2783 1 (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  (class class class)co 7170  cc 10613   + caddc 10618   · cmul 10620  0cn0 11976  cexp 13521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-seq 13461  df-exp 13522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator