Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expcld | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
expcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | expcl 13653 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
Copyright terms: Public domain | W3C validator |