Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
(class class class)co 7409 ℂcc 11108
ℕ0cn0 12472
↑cexp 14027 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559
df-uz 12823 df-seq 13967 df-exp 14028 |
This theorem is referenced by: absexpz
15252 binomlem
15775 incexclem
15782 incexc
15783 incexc2
15784 geoserg
15812 pwdif
15814 pwm1geoser
15815 geolim
15816 geolim2
15817 geo2sum2
15820 geomulcvg
15822 bpolycl
15996 bpolydiflem
15998 efaddlem
16036 oexpneg
16288 pwp1fsum
16334 oddpwp1fsum
16335 cphipval
24760 dvexp3
25495 itgpowd
25567 ply1termlem
25717 dgrcolem2
25788 dvply1
25797 aareccl
25839 aalioulem1
25845 taylfvallem1
25869 tayl0
25874 dvtaylp
25882 taylthlem2
25886 radcnvlem1
25925 pserulm
25934 logtayl
26168 cxpeq
26265 atantayl2
26443 atantayl3
26444 dfef2
26475 ftalem1
26577 ftalem2
26578 ftalem5
26581 basellem4
26588 logexprlim
26728 nrt2irr
29757 psgnfzto1st
32295 madjusmdetlem4
32841 oddpwdc
33384 eulerpartlemgs2
33410 signsplypnf
33592 signsply0
33593 breprexplemc
33675 breprexpnat
33677 bcprod
34739 knoppcnlem4
35420 knoppcnlem10
35426 knoppndvlem2
35437 knoppndvlem6
35441 knoppndvlem7
35442 knoppndvlem8
35443 knoppndvlem9
35444 knoppndvlem10
35445 knoppndvlem14
35449 knoppndvlem17
35452 lcmineqlem8
40949 lcmineqlem10
40951 lcmineqlem12
40953 dvrelogpow2b
40981 aks4d1p1p6
40986 aks4d1p1p7
40987 aks4d1p1
40989 2ap1caineq
41009 nicomachus
41258 exp11d
41264 dffltz
41424 fltmul
41425 fltdiv
41426 fltaccoprm
41430 flt4lem6
41448 fltltc
41451 fltnltalem
41452 3cubeslem3l
41472 3cubeslem3r
41473 3cubeslem4
41475 jm2.18
41775 jm2.22
41782 jm2.23
41783 radcnvrat
43121 binomcxplemnn0
43156 binomcxplemnotnn0
43163 expcnfg
44355 fprodexp
44358 climexp
44369 dvsinexp
44675 dvxpaek
44704 dvnxpaek
44706 ibliccsinexp
44715 iblioosinexp
44717 itgsinexplem1
44718 itgsinexp
44719 iblsplit
44730 stoweidlem1
44765 stoweidlem7
44771 wallispi2lem2
44836 wallispi2
44837 stirlinglem3
44840 stirlinglem4
44841 stirlinglem5
44842 stirlinglem7
44844 stirlinglem8
44845 stirlinglem10
44847 stirlinglem11
44848 stirlinglem13
44850 stirlinglem14
44851 stirlinglem15
44852 elaa2lem
44997 etransclem1
44999 etransclem4
45002 etransclem8
45006 etransclem18
45016 etransclem20
45018 etransclem21
45019 etransclem23
45021 etransclem35
45033 etransclem41
45039 etransclem46
45044 etransclem48
45046 2pwp1prm
46305 lighneallem4
46326 oexpnegALTV
46393 fppr2odd
46447 altgsumbcALT
47077 dignn0flhalflem1
47349 nn0sumshdiglemA
47353 nn0sumshdiglemB
47354 |