Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdiv | Structured version Visualization version GIF version |
Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
fltdiv.s | ⊢ (𝜑 → 𝑆 ∈ ℂ) |
fltdiv.0 | ⊢ (𝜑 → 𝑆 ≠ 0) |
fltdiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
fltdiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
fltdiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
fltdiv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
fltdiv.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
fltdiv | ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltdiv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | fltdiv.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | expcld 13845 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
4 | fltdiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 4, 2 | expcld 13845 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℂ) |
6 | fltdiv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℂ) | |
7 | 6, 2 | expcld 13845 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ∈ ℂ) |
8 | fltdiv.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ 0) | |
9 | 2 | nn0zd 12406 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 6, 8, 9 | expne0d 13851 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ≠ 0) |
11 | 3, 5, 7, 10 | divdird 11772 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
12 | fltdiv.1 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
13 | 12 | oveq1d 7283 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
14 | 11, 13 | eqtr3d 2781 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁))) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
15 | 1, 6, 8, 2 | expdivd 13859 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝑆)↑𝑁) = ((𝐴↑𝑁) / (𝑆↑𝑁))) |
16 | 4, 6, 8, 2 | expdivd 13859 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝑆)↑𝑁) = ((𝐵↑𝑁) / (𝑆↑𝑁))) |
17 | 15, 16 | oveq12d 7286 | . 2 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
18 | fltdiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
19 | 18, 6, 8, 2 | expdivd 13859 | . 2 ⊢ (𝜑 → ((𝐶 / 𝑆)↑𝑁) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
20 | 14, 17, 19 | 3eqtr4d 2789 | 1 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 (class class class)co 7268 ℂcc 10853 0cc0 10855 + caddc 10858 / cdiv 11615 ℕ0cn0 12216 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-exp 13764 |
This theorem is referenced by: fltabcoprmex 40456 |
Copyright terms: Public domain | W3C validator |