Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdiv | Structured version Visualization version GIF version |
Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
fltdiv.s | ⊢ (𝜑 → 𝑆 ∈ ℂ) |
fltdiv.0 | ⊢ (𝜑 → 𝑆 ≠ 0) |
fltdiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
fltdiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
fltdiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
fltdiv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
fltdiv.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
fltdiv | ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltdiv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | fltdiv.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | expcld 13914 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
4 | fltdiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 4, 2 | expcld 13914 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℂ) |
6 | fltdiv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℂ) | |
7 | 6, 2 | expcld 13914 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ∈ ℂ) |
8 | fltdiv.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ 0) | |
9 | 2 | nn0zd 12474 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 6, 8, 9 | expne0d 13920 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ≠ 0) |
11 | 3, 5, 7, 10 | divdird 11839 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
12 | fltdiv.1 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
13 | 12 | oveq1d 7322 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
14 | 11, 13 | eqtr3d 2778 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁))) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
15 | 1, 6, 8, 2 | expdivd 13928 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝑆)↑𝑁) = ((𝐴↑𝑁) / (𝑆↑𝑁))) |
16 | 4, 6, 8, 2 | expdivd 13928 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝑆)↑𝑁) = ((𝐵↑𝑁) / (𝑆↑𝑁))) |
17 | 15, 16 | oveq12d 7325 | . 2 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
18 | fltdiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
19 | 18, 6, 8, 2 | expdivd 13928 | . 2 ⊢ (𝜑 → ((𝐶 / 𝑆)↑𝑁) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
20 | 14, 17, 19 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10919 0cc0 10921 + caddc 10924 / cdiv 11682 ℕ0cn0 12283 ↑cexp 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-exp 13833 |
This theorem is referenced by: fltabcoprmex 40671 |
Copyright terms: Public domain | W3C validator |