| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdiv | Structured version Visualization version GIF version | ||
| Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| fltdiv.s | ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| fltdiv.0 | ⊢ (𝜑 → 𝑆 ≠ 0) |
| fltdiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| fltdiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| fltdiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| fltdiv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| fltdiv.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
| Ref | Expression |
|---|---|
| fltdiv | ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fltdiv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | fltdiv.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | expcld 14169 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 4 | fltdiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 5 | 4, 2 | expcld 14169 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℂ) |
| 6 | fltdiv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℂ) | |
| 7 | 6, 2 | expcld 14169 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ∈ ℂ) |
| 8 | fltdiv.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ 0) | |
| 9 | 2 | nn0zd 12623 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 6, 8, 9 | expne0d 14175 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ≠ 0) |
| 11 | 3, 5, 7, 10 | divdird 12064 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
| 12 | fltdiv.1 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
| 13 | 12 | oveq1d 7429 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
| 14 | 11, 13 | eqtr3d 2771 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁))) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
| 15 | 1, 6, 8, 2 | expdivd 14183 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝑆)↑𝑁) = ((𝐴↑𝑁) / (𝑆↑𝑁))) |
| 16 | 4, 6, 8, 2 | expdivd 14183 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝑆)↑𝑁) = ((𝐵↑𝑁) / (𝑆↑𝑁))) |
| 17 | 15, 16 | oveq12d 7432 | . 2 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
| 18 | fltdiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 19 | 18, 6, 8, 2 | expdivd 14183 | . 2 ⊢ (𝜑 → ((𝐶 / 𝑆)↑𝑁) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
| 20 | 14, 17, 19 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7414 ℂcc 11136 0cc0 11138 + caddc 11141 / cdiv 11903 ℕ0cn0 12510 ↑cexp 14085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-seq 14026 df-exp 14086 |
| This theorem is referenced by: fltabcoprmex 42594 |
| Copyright terms: Public domain | W3C validator |