Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltdiv Structured version   Visualization version   GIF version

Theorem fltdiv 40000
Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
fltdiv.s (𝜑𝑆 ∈ ℂ)
fltdiv.0 (𝜑𝑆 ≠ 0)
fltdiv.a (𝜑𝐴 ∈ ℂ)
fltdiv.b (𝜑𝐵 ∈ ℂ)
fltdiv.c (𝜑𝐶 ∈ ℂ)
fltdiv.n (𝜑𝑁 ∈ ℕ0)
fltdiv.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
fltdiv (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁))

Proof of Theorem fltdiv
StepHypRef Expression
1 fltdiv.a . . . . 5 (𝜑𝐴 ∈ ℂ)
2 fltdiv.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
31, 2expcld 13573 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℂ)
4 fltdiv.b . . . . 5 (𝜑𝐵 ∈ ℂ)
54, 2expcld 13573 . . . 4 (𝜑 → (𝐵𝑁) ∈ ℂ)
6 fltdiv.s . . . . 5 (𝜑𝑆 ∈ ℂ)
76, 2expcld 13573 . . . 4 (𝜑 → (𝑆𝑁) ∈ ℂ)
8 fltdiv.0 . . . . 5 (𝜑𝑆 ≠ 0)
92nn0zd 12137 . . . . 5 (𝜑𝑁 ∈ ℤ)
106, 8, 9expne0d 13579 . . . 4 (𝜑 → (𝑆𝑁) ≠ 0)
113, 5, 7, 10divdird 11505 . . 3 (𝜑 → (((𝐴𝑁) + (𝐵𝑁)) / (𝑆𝑁)) = (((𝐴𝑁) / (𝑆𝑁)) + ((𝐵𝑁) / (𝑆𝑁))))
12 fltdiv.1 . . . 4 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
1312oveq1d 7171 . . 3 (𝜑 → (((𝐴𝑁) + (𝐵𝑁)) / (𝑆𝑁)) = ((𝐶𝑁) / (𝑆𝑁)))
1411, 13eqtr3d 2795 . 2 (𝜑 → (((𝐴𝑁) / (𝑆𝑁)) + ((𝐵𝑁) / (𝑆𝑁))) = ((𝐶𝑁) / (𝑆𝑁)))
151, 6, 8, 2expdivd 13587 . . 3 (𝜑 → ((𝐴 / 𝑆)↑𝑁) = ((𝐴𝑁) / (𝑆𝑁)))
164, 6, 8, 2expdivd 13587 . . 3 (𝜑 → ((𝐵 / 𝑆)↑𝑁) = ((𝐵𝑁) / (𝑆𝑁)))
1715, 16oveq12d 7174 . 2 (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = (((𝐴𝑁) / (𝑆𝑁)) + ((𝐵𝑁) / (𝑆𝑁))))
18 fltdiv.c . . 3 (𝜑𝐶 ∈ ℂ)
1918, 6, 8, 2expdivd 13587 . 2 (𝜑 → ((𝐶 / 𝑆)↑𝑁) = ((𝐶𝑁) / (𝑆𝑁)))
2014, 17, 193eqtr4d 2803 1 (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2951  (class class class)co 7156  cc 10586  0cc0 10588   + caddc 10591   / cdiv 11348  0cn0 11947  cexp 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-seq 13432  df-exp 13493
This theorem is referenced by:  fltabcoprmex  40003
  Copyright terms: Public domain W3C validator