| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdiv | Structured version Visualization version GIF version | ||
| Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| fltdiv.s | ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| fltdiv.0 | ⊢ (𝜑 → 𝑆 ≠ 0) |
| fltdiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| fltdiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| fltdiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| fltdiv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| fltdiv.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
| Ref | Expression |
|---|---|
| fltdiv | ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fltdiv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | fltdiv.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | expcld 14050 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 4 | fltdiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 5 | 4, 2 | expcld 14050 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℂ) |
| 6 | fltdiv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℂ) | |
| 7 | 6, 2 | expcld 14050 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ∈ ℂ) |
| 8 | fltdiv.0 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ 0) | |
| 9 | 2 | nn0zd 12491 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 6, 8, 9 | expne0d 14056 | . . . 4 ⊢ (𝜑 → (𝑆↑𝑁) ≠ 0) |
| 11 | 3, 5, 7, 10 | divdird 11932 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
| 12 | fltdiv.1 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
| 13 | 12 | oveq1d 7361 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑁) + (𝐵↑𝑁)) / (𝑆↑𝑁)) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
| 14 | 11, 13 | eqtr3d 2768 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁))) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
| 15 | 1, 6, 8, 2 | expdivd 14064 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝑆)↑𝑁) = ((𝐴↑𝑁) / (𝑆↑𝑁))) |
| 16 | 4, 6, 8, 2 | expdivd 14064 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝑆)↑𝑁) = ((𝐵↑𝑁) / (𝑆↑𝑁))) |
| 17 | 15, 16 | oveq12d 7364 | . 2 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = (((𝐴↑𝑁) / (𝑆↑𝑁)) + ((𝐵↑𝑁) / (𝑆↑𝑁)))) |
| 18 | fltdiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 19 | 18, 6, 8, 2 | expdivd 14064 | . 2 ⊢ (𝜑 → ((𝐶 / 𝑆)↑𝑁) = ((𝐶↑𝑁) / (𝑆↑𝑁))) |
| 20 | 14, 17, 19 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11001 0cc0 11003 + caddc 11006 / cdiv 11771 ℕ0cn0 12378 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: fltabcoprmex 42671 |
| Copyright terms: Public domain | W3C validator |