![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablfac1a | Structured version Visualization version GIF version |
Description: The factors of ablfac1b 20039 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
Ref | Expression |
---|---|
ablfac1a | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
2 | oveq1 7426 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵))) | |
3 | 1, 2 | oveq12d 7437 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
4 | 3 | breq2d 5161 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
5 | 4 | rabbidv 3426 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
6 | ablfac1.s | . . . . 5 ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
7 | ablfac1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 7 | fvexi 6910 | . . . . . 6 ⊢ 𝐵 ∈ V |
9 | 8 | rabex 5335 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
10 | 5, 6, 9 | fvmpt3i 7009 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
11 | 10 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
12 | 11 | fveq2d 6900 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})) |
13 | ablfac1.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
14 | eqid 2725 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} | |
15 | eqid 2725 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} | |
16 | ablfac1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
17 | 16 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝐺 ∈ Abel) |
18 | ablfac1.f | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
19 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
20 | eqid 2725 | . . . . . . 7 ⊢ (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
21 | eqid 2725 | . . . . . . 7 ⊢ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | |
22 | 7, 13, 6, 16, 18, 19, 20, 21 | ablfac1lem 20037 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))) |
23 | 22 | simp1d 1139 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)) |
24 | 23 | simpld 493 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
25 | 23 | simprd 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) |
26 | 22 | simp2d 1140 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1) |
27 | 22 | simp3d 1141 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
28 | 7, 13, 14, 15, 17, 24, 25, 26, 27 | ablfacrp2 20036 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
29 | 28 | simpld 493 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
30 | 12, 29 | eqtrd 2765 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ⊆ wss 3944 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 1c1 11141 · cmul 11145 / cdiv 11903 ℕcn 12245 ↑cexp 14062 ♯chash 14325 ∥ cdvds 16234 gcd cgcd 16472 ℙcprime 16645 pCnt cpc 16808 Basecbs 17183 odcod 19491 Abelcabl 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-acn 9967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 df-dvds 16235 df-gcd 16473 df-prm 16646 df-pc 16809 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-eqg 19088 df-ga 19253 df-cntz 19280 df-od 19495 df-lsm 19603 df-pj1 19604 df-cmn 19749 df-abl 19750 |
This theorem is referenced by: ablfac1c 20040 ablfac1eu 20042 ablfaclem3 20056 |
Copyright terms: Public domain | W3C validator |