MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1a Structured version   Visualization version   GIF version

Theorem ablfac1a 19193
Description: The factors of ablfac1b 19194 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1a ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1a
StepHypRef Expression
1 id 22 . . . . . . . 8 (𝑝 = 𝑃𝑝 = 𝑃)
2 oveq1 7165 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵)))
31, 2oveq12d 7176 . . . . . . 7 (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
43breq2d 5080 . . . . . 6 (𝑝 = 𝑃 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
54rabbidv 3482 . . . . 5 (𝑝 = 𝑃 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})
6 ablfac1.s . . . . 5 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
7 ablfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
87fvexi 6686 . . . . . 6 𝐵 ∈ V
98rabex 5237 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
105, 6, 9fvmpt3i 6775 . . . 4 (𝑃𝐴 → (𝑆𝑃) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})
1110adantl 484 . . 3 ((𝜑𝑃𝐴) → (𝑆𝑃) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})
1211fveq2d 6676 . 2 ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}))
13 ablfac1.o . . . 4 𝑂 = (od‘𝐺)
14 eqid 2823 . . . 4 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}
15 eqid 2823 . . . 4 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}
16 ablfac1.g . . . . 5 (𝜑𝐺 ∈ Abel)
1716adantr 483 . . . 4 ((𝜑𝑃𝐴) → 𝐺 ∈ Abel)
18 ablfac1.f . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
20 eqid 2823 . . . . . . 7 (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
21 eqid 2823 . . . . . . 7 ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
227, 13, 6, 16, 18, 19, 20, 21ablfac1lem 19192 . . . . . 6 ((𝜑𝑃𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))))
2322simp1d 1138 . . . . 5 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ))
2423simpld 497 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
2523simprd 498 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)
2622simp2d 1139 . . . 4 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1)
2722simp3d 1140 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))
287, 13, 14, 15, 17, 24, 25, 26, 27ablfacrp2 19191 . . 3 ((𝜑𝑃𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))
2928simpld 497 . 2 ((𝜑𝑃𝐴) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3012, 29eqtrd 2858 1 ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3144  wss 3938   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  Fincfn 8511  1c1 10540   · cmul 10544   / cdiv 11299  cn 11640  cexp 13432  chash 13693  cdvds 15609   gcd cgcd 15845  cprime 16017   pCnt cpc 16175  Basecbs 16485  odcod 18654  Abelcabl 18909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-eqg 18280  df-ga 18422  df-cntz 18449  df-od 18658  df-lsm 18763  df-pj1 18764  df-cmn 18910  df-abl 18911
This theorem is referenced by:  ablfac1c  19195  ablfac1eu  19197  ablfaclem3  19211
  Copyright terms: Public domain W3C validator