| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfac1a | Structured version Visualization version GIF version | ||
| Description: The factors of ablfac1b 19986 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
| Ref | Expression |
|---|---|
| ablfac1a | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
| 2 | oveq1 7359 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵))) | |
| 3 | 1, 2 | oveq12d 7370 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 4 | 3 | breq2d 5105 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 5 | 4 | rabbidv 3403 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
| 6 | ablfac1.s | . . . . 5 ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
| 7 | ablfac1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 7 | fvexi 6842 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 9 | 8 | rabex 5279 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
| 10 | 5, 6, 9 | fvmpt3i 6940 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
| 12 | 11 | fveq2d 6832 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})) |
| 13 | ablfac1.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 14 | eqid 2733 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} | |
| 15 | eqid 2733 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} | |
| 16 | ablfac1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝐺 ∈ Abel) |
| 18 | ablfac1.f | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 19 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
| 20 | eqid 2733 | . . . . . . 7 ⊢ (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
| 21 | eqid 2733 | . . . . . . 7 ⊢ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | |
| 22 | 7, 13, 6, 16, 18, 19, 20, 21 | ablfac1lem 19984 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))) |
| 23 | 22 | simp1d 1142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)) |
| 24 | 23 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
| 25 | 23 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) |
| 26 | 22 | simp2d 1143 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1) |
| 27 | 22 | simp3d 1144 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
| 28 | 7, 13, 14, 15, 17, 24, 25, 26, 27 | ablfacrp2 19983 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
| 29 | 28 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 30 | 12, 29 | eqtrd 2768 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 1c1 11014 · cmul 11018 / cdiv 11781 ℕcn 12132 ↑cexp 13970 ♯chash 14239 ∥ cdvds 16165 gcd cgcd 16407 ℙcprime 16584 pCnt cpc 16750 Basecbs 17122 odcod 19438 Abelcabl 19695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 df-dvds 16166 df-gcd 16408 df-prm 16585 df-pc 16751 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-eqg 19040 df-ga 19204 df-cntz 19231 df-od 19442 df-lsm 19550 df-pj1 19551 df-cmn 19696 df-abl 19697 |
| This theorem is referenced by: ablfac1c 19987 ablfac1eu 19989 ablfaclem3 20003 |
| Copyright terms: Public domain | W3C validator |