| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfac1a | Structured version Visualization version GIF version | ||
| Description: The factors of ablfac1b 20009 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
| Ref | Expression |
|---|---|
| ablfac1a | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
| 2 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵))) | |
| 3 | 1, 2 | oveq12d 7408 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 4 | 3 | breq2d 5122 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 5 | 4 | rabbidv 3416 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
| 6 | ablfac1.s | . . . . 5 ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
| 7 | ablfac1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 7 | fvexi 6875 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 9 | 8 | rabex 5297 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
| 10 | 5, 6, 9 | fvmpt3i 6976 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
| 12 | 11 | fveq2d 6865 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})) |
| 13 | ablfac1.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 14 | eqid 2730 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} | |
| 15 | eqid 2730 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} | |
| 16 | ablfac1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝐺 ∈ Abel) |
| 18 | ablfac1.f | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 19 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | |
| 22 | 7, 13, 6, 16, 18, 19, 20, 21 | ablfac1lem 20007 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))) |
| 23 | 22 | simp1d 1142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)) |
| 24 | 23 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
| 25 | 23 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) |
| 26 | 22 | simp2d 1143 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1) |
| 27 | 22 | simp3d 1144 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
| 28 | 7, 13, 14, 15, 17, 24, 25, 26, 27 | ablfacrp2 20006 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
| 29 | 28 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 30 | 12, 29 | eqtrd 2765 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 · cmul 11080 / cdiv 11842 ℕcn 12193 ↑cexp 14033 ♯chash 14302 ∥ cdvds 16229 gcd cgcd 16471 ℙcprime 16648 pCnt cpc 16814 Basecbs 17186 odcod 19461 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-dvds 16230 df-gcd 16472 df-prm 16649 df-pc 16815 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-eqg 19064 df-ga 19229 df-cntz 19256 df-od 19465 df-lsm 19573 df-pj1 19574 df-cmn 19719 df-abl 19720 |
| This theorem is referenced by: ablfac1c 20010 ablfac1eu 20012 ablfaclem3 20026 |
| Copyright terms: Public domain | W3C validator |