MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1a Structured version   Visualization version   GIF version

Theorem ablfac1a 19984
Description: The factors of ablfac1b 19985 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
Assertion
Ref Expression
ablfac1a ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)

Proof of Theorem ablfac1a
StepHypRef Expression
1 id 22 . . . . . . . 8 (𝑝 = 𝑃𝑝 = 𝑃)
2 oveq1 7353 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵)))
31, 2oveq12d 7364 . . . . . . 7 (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
43breq2d 5103 . . . . . 6 (𝑝 = 𝑃 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
54rabbidv 3402 . . . . 5 (𝑝 = 𝑃 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})
6 ablfac1.s . . . . 5 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
7 ablfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
87fvexi 6836 . . . . . 6 𝐵 ∈ V
98rabex 5277 . . . . 5 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
105, 6, 9fvmpt3i 6934 . . . 4 (𝑃𝐴 → (𝑆𝑃) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})
1110adantl 481 . . 3 ((𝜑𝑃𝐴) → (𝑆𝑃) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})
1211fveq2d 6826 . 2 ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}))
13 ablfac1.o . . . 4 𝑂 = (od‘𝐺)
14 eqid 2731 . . . 4 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}
15 eqid 2731 . . . 4 {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}
16 ablfac1.g . . . . 5 (𝜑𝐺 ∈ Abel)
1716adantr 480 . . . 4 ((𝜑𝑃𝐴) → 𝐺 ∈ Abel)
18 ablfac1.f . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
20 eqid 2731 . . . . . . 7 (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
21 eqid 2731 . . . . . . 7 ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
227, 13, 6, 16, 18, 19, 20, 21ablfac1lem 19983 . . . . . 6 ((𝜑𝑃𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))))
2322simp1d 1142 . . . . 5 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ))
2423simpld 494 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
2523simprd 495 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)
2622simp2d 1143 . . . 4 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1)
2722simp3d 1144 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))
287, 13, 14, 15, 17, 24, 25, 26, 27ablfacrp2 19982 . . 3 ((𝜑𝑃𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))
2928simpld 494 . 2 ((𝜑𝑃𝐴) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3012, 29eqtrd 2766 1 ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3902   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  Fincfn 8869  1c1 11007   · cmul 11011   / cdiv 11774  cn 12125  cexp 13968  chash 14237  cdvds 16163   gcd cgcd 16405  cprime 16582   pCnt cpc 16748  Basecbs 17120  odcod 19437  Abelcabl 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-eqg 19038  df-ga 19203  df-cntz 19230  df-od 19441  df-lsm 19549  df-pj1 19550  df-cmn 19695  df-abl 19696
This theorem is referenced by:  ablfac1c  19986  ablfac1eu  19988  ablfaclem3  20002
  Copyright terms: Public domain W3C validator