![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablfac1a | Structured version Visualization version GIF version |
Description: The factors of ablfac1b 20105 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
Ref | Expression |
---|---|
ablfac1a | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
2 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵))) | |
3 | 1, 2 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
4 | 3 | breq2d 5160 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
5 | 4 | rabbidv 3441 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
6 | ablfac1.s | . . . . 5 ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
7 | ablfac1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 7 | fvexi 6921 | . . . . . 6 ⊢ 𝐵 ∈ V |
9 | 8 | rabex 5345 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
10 | 5, 6, 9 | fvmpt3i 7021 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
12 | 11 | fveq2d 6911 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})) |
13 | ablfac1.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
14 | eqid 2735 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} | |
15 | eqid 2735 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} | |
16 | ablfac1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝐺 ∈ Abel) |
18 | ablfac1.f | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
19 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
20 | eqid 2735 | . . . . . . 7 ⊢ (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
21 | eqid 2735 | . . . . . . 7 ⊢ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | |
22 | 7, 13, 6, 16, 18, 19, 20, 21 | ablfac1lem 20103 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))) |
23 | 22 | simp1d 1141 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)) |
24 | 23 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
25 | 23 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) |
26 | 22 | simp2d 1142 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1) |
27 | 22 | simp3d 1143 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
28 | 7, 13, 14, 15, 17, 24, 25, 26, 27 | ablfacrp2 20102 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
29 | 28 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
30 | 12, 29 | eqtrd 2775 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 1c1 11154 · cmul 11158 / cdiv 11918 ℕcn 12264 ↑cexp 14099 ♯chash 14366 ∥ cdvds 16287 gcd cgcd 16528 ℙcprime 16705 pCnt cpc 16870 Basecbs 17245 odcod 19557 Abelcabl 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-eqg 19156 df-ga 19321 df-cntz 19348 df-od 19561 df-lsm 19669 df-pj1 19670 df-cmn 19815 df-abl 19816 |
This theorem is referenced by: ablfac1c 20106 ablfac1eu 20108 ablfaclem3 20122 |
Copyright terms: Public domain | W3C validator |