![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifa | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifa | ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) | |
7 | eqidd 2732 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐴) | |
8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁) | |
9 | 8 | gt0ne0d 11783 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0) |
10 | 9 | neneqd 2944 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
11 | 10 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁 = 0 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
12 | 11 | impancom 451 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
13 | 12 | 3adant3 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
14 | 13 | 3imp 1110 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵) |
15 | 2 | nnne0d 12267 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ≠ 0) |
16 | 15 | necomd 2995 | . . . . . . . 8 ⊢ (𝜑 → 0 ≠ 𝑆) |
17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 0 ≠ 𝑆) |
18 | neeq1 3002 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆)) | |
19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆)) |
20 | 17, 19 | mpbird 256 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 𝑆) |
21 | 20 | 3adant3 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑁 ≠ 𝑆) |
22 | 21 | neneqd 2944 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ¬ 𝑁 = 𝑆) |
23 | 22 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐶)) |
24 | 23 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐶) |
25 | nnnn0 12484 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0) | |
26 | nn0nlt0 12503 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → ¬ 𝑆 < 0) | |
27 | 2, 25, 26 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 < 0) |
28 | 27 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
29 | breq2 5153 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
30 | 29 | notbid 317 | . . . . . . 7 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
31 | 30 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
32 | 28, 31 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
33 | 32 | 3adant3 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
34 | 33 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐷)) |
35 | 34 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐷) |
36 | 1, 3, 5, 6, 7, 14, 24, 35 | fvmptnn04if 22572 | 1 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ⦋csb 3894 ifcif 4529 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6544 0cc0 11113 < clt 11253 ℕcn 12217 ℕ0cn0 12477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |