![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifa | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifa | ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) | |
7 | eqidd 2737 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐴) | |
8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁) | |
9 | 8 | gt0ne0d 11831 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0) |
10 | 9 | neneqd 2944 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
11 | 10 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁 = 0 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
12 | 11 | impancom 451 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
13 | 12 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
14 | 13 | 3imp 1110 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵) |
15 | 2 | nnne0d 12320 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ≠ 0) |
16 | 15 | necomd 2995 | . . . . . . . 8 ⊢ (𝜑 → 0 ≠ 𝑆) |
17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 0 ≠ 𝑆) |
18 | neeq1 3002 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆)) | |
19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆)) |
20 | 17, 19 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 𝑆) |
21 | 20 | 3adant3 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑁 ≠ 𝑆) |
22 | 21 | neneqd 2944 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ¬ 𝑁 = 𝑆) |
23 | 22 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐶)) |
24 | 23 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐶) |
25 | nnnn0 12537 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0) | |
26 | nn0nlt0 12556 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → ¬ 𝑆 < 0) | |
27 | 2, 25, 26 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 < 0) |
28 | 27 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
29 | breq2 5153 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
30 | 29 | notbid 318 | . . . . . . 7 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
31 | 30 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
32 | 28, 31 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
33 | 32 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
34 | 33 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐷)) |
35 | 34 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐷) |
36 | 1, 3, 5, 6, 7, 14, 24, 35 | fvmptnn04if 22877 | 1 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ⦋csb 3909 ifcif 4532 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6566 0cc0 11159 < clt 11299 ℕcn 12270 ℕ0cn0 12530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-n0 12531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |