MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifa Structured version   Visualization version   GIF version

Theorem fvmptnn04ifa 21907
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifa ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifa
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1131 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1131 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1136 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁 / 𝑛𝐴𝑉)
7 eqidd 2739 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐴)
8 simpr 484 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
98gt0ne0d 11469 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
109neneqd 2947 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
1110pm2.21d 121 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁 = 0 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
1211impancom 451 . . . 4 ((𝜑𝑁 = 0) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
13123adant3 1130 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
14133imp 1109 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)
152nnne0d 11953 . . . . . . . . 9 (𝜑𝑆 ≠ 0)
1615necomd 2998 . . . . . . . 8 (𝜑 → 0 ≠ 𝑆)
1716adantr 480 . . . . . . 7 ((𝜑𝑁 = 0) → 0 ≠ 𝑆)
18 neeq1 3005 . . . . . . . 8 (𝑁 = 0 → (𝑁𝑆 ↔ 0 ≠ 𝑆))
1918adantl 481 . . . . . . 7 ((𝜑𝑁 = 0) → (𝑁𝑆 ↔ 0 ≠ 𝑆))
2017, 19mpbird 256 . . . . . 6 ((𝜑𝑁 = 0) → 𝑁𝑆)
21203adant3 1130 . . . . 5 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁𝑆)
2221neneqd 2947 . . . 4 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → ¬ 𝑁 = 𝑆)
2322pm2.21d 121 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐶))
2423imp 406 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐶)
25 nnnn0 12170 . . . . . . . 8 (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0)
26 nn0nlt0 12189 . . . . . . . 8 (𝑆 ∈ ℕ0 → ¬ 𝑆 < 0)
272, 25, 263syl 18 . . . . . . 7 (𝜑 → ¬ 𝑆 < 0)
2827adantr 480 . . . . . 6 ((𝜑𝑁 = 0) → ¬ 𝑆 < 0)
29 breq2 5074 . . . . . . . 8 (𝑁 = 0 → (𝑆 < 𝑁𝑆 < 0))
3029notbid 317 . . . . . . 7 (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
3130adantl 481 . . . . . 6 ((𝜑𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
3228, 31mpbird 256 . . . . 5 ((𝜑𝑁 = 0) → ¬ 𝑆 < 𝑁)
33323adant3 1130 . . . 4 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → ¬ 𝑆 < 𝑁)
3433pm2.21d 121 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝑆 < 𝑁𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐷))
3534imp 406 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐷)
361, 3, 5, 6, 7, 14, 24, 35fvmptnn04if 21906 1 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  csb 3828  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  0cc0 10802   < clt 10940  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator