MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifa Structured version   Visualization version   GIF version

Theorem fvmptnn04ifa 22823
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifa ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifa
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1133 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1133 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1138 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁 / 𝑛𝐴𝑉)
7 eqidd 2735 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐴)
8 simpr 484 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
98gt0ne0d 11810 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
109neneqd 2936 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
1110pm2.21d 121 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁 = 0 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
1211impancom 451 . . . 4 ((𝜑𝑁 = 0) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
13123adant3 1132 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
14133imp 1110 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)
152nnne0d 12299 . . . . . . . . 9 (𝜑𝑆 ≠ 0)
1615necomd 2986 . . . . . . . 8 (𝜑 → 0 ≠ 𝑆)
1716adantr 480 . . . . . . 7 ((𝜑𝑁 = 0) → 0 ≠ 𝑆)
18 neeq1 2993 . . . . . . . 8 (𝑁 = 0 → (𝑁𝑆 ↔ 0 ≠ 𝑆))
1918adantl 481 . . . . . . 7 ((𝜑𝑁 = 0) → (𝑁𝑆 ↔ 0 ≠ 𝑆))
2017, 19mpbird 257 . . . . . 6 ((𝜑𝑁 = 0) → 𝑁𝑆)
21203adant3 1132 . . . . 5 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁𝑆)
2221neneqd 2936 . . . 4 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → ¬ 𝑁 = 𝑆)
2322pm2.21d 121 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐶))
2423imp 406 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐶)
25 nnnn0 12517 . . . . . . . 8 (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0)
26 nn0nlt0 12536 . . . . . . . 8 (𝑆 ∈ ℕ0 → ¬ 𝑆 < 0)
272, 25, 263syl 18 . . . . . . 7 (𝜑 → ¬ 𝑆 < 0)
2827adantr 480 . . . . . 6 ((𝜑𝑁 = 0) → ¬ 𝑆 < 0)
29 breq2 5129 . . . . . . . 8 (𝑁 = 0 → (𝑆 < 𝑁𝑆 < 0))
3029notbid 318 . . . . . . 7 (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
3130adantl 481 . . . . . 6 ((𝜑𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
3228, 31mpbird 257 . . . . 5 ((𝜑𝑁 = 0) → ¬ 𝑆 < 𝑁)
33323adant3 1132 . . . 4 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → ¬ 𝑆 < 𝑁)
3433pm2.21d 121 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝑆 < 𝑁𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐷))
3534imp 406 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐷)
361, 3, 5, 6, 7, 14, 24, 35fvmptnn04if 22822 1 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  csb 3881  ifcif 4507   class class class wbr 5125  cmpt 5207  cfv 6542  0cc0 11138   < clt 11278  cn 12249  0cn0 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-n0 12511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator