Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifa | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifa | ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1135 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1135 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1140 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) | |
7 | eqidd 2738 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐴) | |
8 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁) | |
9 | 8 | gt0ne0d 11396 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0) |
10 | 9 | neneqd 2945 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
11 | 10 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁 = 0 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
12 | 11 | impancom 455 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
13 | 12 | 3adant3 1134 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵))) |
14 | 13 | 3imp 1113 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐵) |
15 | 2 | nnne0d 11880 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ≠ 0) |
16 | 15 | necomd 2996 | . . . . . . . 8 ⊢ (𝜑 → 0 ≠ 𝑆) |
17 | 16 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 0 ≠ 𝑆) |
18 | neeq1 3003 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆)) | |
19 | 18 | adantl 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆)) |
20 | 17, 19 | mpbird 260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 𝑆) |
21 | 20 | 3adant3 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → 𝑁 ≠ 𝑆) |
22 | 21 | neneqd 2945 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ¬ 𝑁 = 𝑆) |
23 | 22 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐶)) |
24 | 23 | imp 410 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐶) |
25 | nnnn0 12097 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0) | |
26 | nn0nlt0 12116 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → ¬ 𝑆 < 0) | |
27 | 2, 25, 26 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 < 0) |
28 | 27 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
29 | breq2 5057 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
30 | 29 | notbid 321 | . . . . . . 7 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
31 | 30 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
32 | 28, 31 | mpbird 260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
33 | 32 | 3adant3 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
34 | 33 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐷)) |
35 | 34 | imp 410 | . 2 ⊢ (((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐴 = ⦋𝑁 / 𝑛⦌𝐷) |
36 | 1, 3, 5, 6, 7, 14, 24, 35 | fvmptnn04if 21746 | 1 ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ⦋csb 3811 ifcif 4439 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 0cc0 10729 < clt 10867 ℕcn 11830 ℕ0cn0 12090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |