Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnne0d | Structured version Visualization version GIF version |
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnne0 11937 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Copyright terms: Public domain | W3C validator |