Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1lem2 Structured version   Visualization version   GIF version

Theorem lmod1lem2 47742
Description: Lemma 2 for lmod1 47746. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1lem2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
Distinct variable groups:   𝐼,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑟)

Proof of Theorem lmod1lem2
StepHypRef Expression
1 fvex 6909 . . . . . . 7 (Base‘𝑅) ∈ V
2 snex 5433 . . . . . . 7 {𝐼} ∈ V
31, 2pm3.2i 469 . . . . . 6 ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)
4 mpoexga 8082 . . . . . 6 (((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
53, 4mp1i 13 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
6 lmod1.m . . . . . 6 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
76lmodvsca 17313 . . . . 5 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
85, 7syl 17 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
98eqcomd 2731 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ( ·𝑠𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦))
10 simprr 771 . . 3 (((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) ∧ (𝑥 = 𝑟𝑦 = 𝐼)) → 𝑦 = 𝐼)
11 simp3 1135 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → 𝑟 ∈ (Base‘𝑅))
12 snidg 4664 . . . 4 (𝐼𝑉𝐼 ∈ {𝐼})
13123ad2ant1 1130 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → 𝐼 ∈ {𝐼})
149, 10, 11, 13, 13ovmpod 7573 . 2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) = 𝐼)
15 snex 5433 . . . . . . 7 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
166lmodplusg 17311 . . . . . . 7 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
1715, 16mp1i 13 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
1817eqcomd 2731 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (+g𝑀) = {⟨⟨𝐼, 𝐼⟩, 𝐼⟩})
1918oveqd 7436 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝐼(+g𝑀)𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
20 df-ov 7422 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
21 opex 5466 . . . . . 6 𝐼, 𝐼⟩ ∈ V
22 simp1 1133 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → 𝐼𝑉)
23 fvsng 7189 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
2421, 22, 23sylancr 585 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
2520, 24eqtrid 2777 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
2619, 25eqtrd 2765 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝐼(+g𝑀)𝐼) = 𝐼)
2726oveq2d 7435 . 2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = (𝑟( ·𝑠𝑀)𝐼))
282a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → {𝐼} ∈ V)
291, 28, 4sylancr 585 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
3029, 7syl 17 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
3130eqcomd 2731 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ( ·𝑠𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦))
3231, 10, 11, 13, 13ovmpod 7573 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) = 𝐼)
3332, 32oveq12d 7437 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = (𝐼(+g𝑀)𝐼))
3433, 26eqtrd 2765 . 2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = 𝐼)
3514, 27, 343eqtr4d 2775 1 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  cun 3942  {csn 4630  {ctp 4634  cop 4636  cfv 6549  (class class class)co 7419  cmpo 7421  ndxcnx 17165  Basecbs 17183  +gcplusg 17236  Scalarcsca 17239   ·𝑠 cvsca 17240  Ringcrg 20185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-sca 17252  df-vsca 17253
This theorem is referenced by:  lmod1  47746
  Copyright terms: Public domain W3C validator