![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfzsplit | Structured version Visualization version GIF version |
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019.) |
Ref | Expression |
---|---|
gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
gsummptfzsplit.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzsplit | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | fzfid 13934 | . 2 ⊢ (𝜑 → (0...(𝑁 + 1)) ∈ Fin) | |
5 | gsummptfzsplit.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑌 ∈ 𝐵) | |
6 | fzp1disj 13556 | . . 3 ⊢ ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
8 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | elnn0uz 12863 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
11 | fzsuc 13544 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)})) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)})) |
13 | 1, 2, 3, 4, 5, 7, 12 | gsummptfidmsplit 19792 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 ℕ0cn0 12468 ℤ≥cuz 12818 ...cfz 13480 Basecbs 17140 +gcplusg 17193 Σg cgsu 17382 CMndccmn 19642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-cntz 19175 df-cmn 19644 |
This theorem is referenced by: srgbinomlem3 20044 pmatcollpw3fi1lem1 22279 chfacfscmulgsum 22353 chfacfpmmulgsum 22357 cpmadugsumlemF 22369 freshmansdream 32369 |
Copyright terms: Public domain | W3C validator |