![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfzsplit | Structured version Visualization version GIF version |
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019.) |
Ref | Expression |
---|---|
gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
gsummptfzsplit.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzsplit | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | fzfid 13962 | . 2 ⊢ (𝜑 → (0...(𝑁 + 1)) ∈ Fin) | |
5 | gsummptfzsplit.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑌 ∈ 𝐵) | |
6 | fzp1disj 13584 | . . 3 ⊢ ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
8 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | elnn0uz 12889 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
11 | fzsuc 13572 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)})) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)})) |
13 | 1, 2, 3, 4, 5, 7, 12 | gsummptfidmsplit 19876 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 ∩ cin 3943 ∅c0 4318 {csn 4624 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 + caddc 11133 ℕ0cn0 12494 ℤ≥cuz 12844 ...cfz 13508 Basecbs 17171 +gcplusg 17224 Σg cgsu 17413 CMndccmn 19726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-fzo 13652 df-seq 13991 df-hash 14314 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-0g 17414 df-gsum 17415 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-cntz 19259 df-cmn 19728 |
This theorem is referenced by: srgbinomlem3 20159 freshmansdream 21495 pmatcollpw3fi1lem1 22675 chfacfscmulgsum 22749 chfacfpmmulgsum 22753 cpmadugsumlemF 22765 aks6d1c1 41520 |
Copyright terms: Public domain | W3C validator |