MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzsplit Structured version   Visualization version   GIF version

Theorem gsummptfzsplit 19048
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019.)
Hypotheses
Ref Expression
gsummptfzsplit.b 𝐵 = (Base‘𝐺)
gsummptfzsplit.p + = (+g𝐺)
gsummptfzsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfzsplit.n (𝜑𝑁 ∈ ℕ0)
gsummptfzsplit.y ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑌𝐵)
Assertion
Ref Expression
gsummptfzsplit (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfzsplit
StepHypRef Expression
1 gsummptfzsplit.b . 2 𝐵 = (Base‘𝐺)
2 gsummptfzsplit.p . 2 + = (+g𝐺)
3 gsummptfzsplit.g . 2 (𝜑𝐺 ∈ CMnd)
4 fzfid 13341 . 2 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
5 gsummptfzsplit.y . 2 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑌𝐵)
6 fzp1disj 12966 . . 3 ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅
76a1i 11 . 2 (𝜑 → ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅)
8 gsummptfzsplit.n . . . 4 (𝜑𝑁 ∈ ℕ0)
9 elnn0uz 12276 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
108, 9sylib 221 . . 3 (𝜑𝑁 ∈ (ℤ‘0))
11 fzsuc 12954 . . 3 (𝑁 ∈ (ℤ‘0) → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)}))
1210, 11syl 17 . 2 (𝜑 → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)}))
131, 2, 3, 4, 5, 7, 12gsummptfidmsplit 19046 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cun 3917  cin 3918  c0 4275  {csn 4549  cmpt 5132  cfv 6343  (class class class)co 7145  0cc0 10529  1c1 10530   + caddc 10532  0cn0 11890  cuz 12236  ...cfz 12890  Basecbs 16479  +gcplusg 16561   Σg cgsu 16710  CMndccmn 18902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-oi 8965  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-n0 11891  df-z 11975  df-uz 12237  df-fz 12891  df-fzo 13034  df-seq 13370  df-hash 13692  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-gsum 16712  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-cntz 18443  df-cmn 18904
This theorem is referenced by:  srgbinomlem3  19288  pmatcollpw3fi1lem1  21387  chfacfscmulgsum  21461  chfacfpmmulgsum  21465  cpmadugsumlemF  21477  freshmansdream  30884
  Copyright terms: Public domain W3C validator