MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetero Structured version   Visualization version   GIF version

Theorem mdetero 21667
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetero.d 𝐷 = (𝑁 maDet 𝑅)
mdetero.k 𝐾 = (Base‘𝑅)
mdetero.p + = (+g𝑅)
mdetero.t · = (.r𝑅)
mdetero.r (𝜑𝑅 ∈ CRing)
mdetero.n (𝜑𝑁 ∈ Fin)
mdetero.x ((𝜑𝑗𝑁) → 𝑋𝐾)
mdetero.y ((𝜑𝑗𝑁) → 𝑌𝐾)
mdetero.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetero.w (𝜑𝑊𝐾)
mdetero.i (𝜑𝐼𝑁)
mdetero.j (𝜑𝐽𝑁)
mdetero.ij (𝜑𝐼𝐽)
Assertion
Ref Expression
mdetero (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑋   𝑖,𝑌   𝑖,𝑊,𝑗   · ,𝑖,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetero
StepHypRef Expression
1 mdetero.d . . 3 𝐷 = (𝑁 maDet 𝑅)
2 mdetero.k . . 3 𝐾 = (Base‘𝑅)
3 mdetero.p . . 3 + = (+g𝑅)
4 mdetero.r . . 3 (𝜑𝑅 ∈ CRing)
5 mdetero.n . . 3 (𝜑𝑁 ∈ Fin)
6 mdetero.x . . . 4 ((𝜑𝑗𝑁) → 𝑋𝐾)
763adant2 1129 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
8 crngring 19710 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
94, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1131 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetero.w . . . . 5 (𝜑𝑊𝐾)
12113ad2ant1 1131 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑊𝐾)
13 mdetero.y . . . . 5 ((𝜑𝑗𝑁) → 𝑌𝐾)
14133adant2 1129 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
15 mdetero.t . . . . 5 · = (.r𝑅)
162, 15ringcl 19715 . . . 4 ((𝑅 ∈ Ring ∧ 𝑊𝐾𝑌𝐾) → (𝑊 · 𝑌) ∈ 𝐾)
1710, 12, 14, 16syl3anc 1369 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → (𝑊 · 𝑌) ∈ 𝐾)
18 mdetero.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1914, 18ifcld 4502 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐽, 𝑌, 𝑍) ∈ 𝐾)
20 mdetero.i . . 3 (𝜑𝐼𝑁)
211, 2, 3, 4, 5, 7, 17, 19, 20mdetrlin2 21664 . 2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))))
221, 2, 15, 4, 5, 14, 19, 11, 20mdetrsca2 21661 . . . 4 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝑊 · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))))
23 eqid 2738 . . . . . 6 (0g𝑅) = (0g𝑅)
24 mdetero.j . . . . . 6 (𝜑𝐽𝑁)
25 mdetero.ij . . . . . 6 (𝜑𝐼𝐽)
261, 2, 23, 4, 5, 13, 18, 20, 24, 25mdetralt2 21666 . . . . 5 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g𝑅))
2726oveq2d 7271 . . . 4 (𝜑 → (𝑊 · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))) = (𝑊 · (0g𝑅)))
282, 15, 23ringrz 19742 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑊𝐾) → (𝑊 · (0g𝑅)) = (0g𝑅))
299, 11, 28syl2anc 583 . . . 4 (𝜑 → (𝑊 · (0g𝑅)) = (0g𝑅))
3022, 27, 293eqtrd 2782 . . 3 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g𝑅))
3130oveq2d 7271 . 2 (𝜑 → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)))
32 ringgrp 19703 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
339, 32syl 17 . . 3 (𝜑𝑅 ∈ Grp)
34 eqid 2738 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
35 eqid 2738 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
361, 34, 35, 2mdetf 21652 . . . . 5 (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾)
374, 36syl 17 . . . 4 (𝜑𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾)
387, 19ifcld 4502 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)) ∈ 𝐾)
3934, 2, 35, 5, 4, 38matbas2d 21480 . . . 4 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))) ∈ (Base‘(𝑁 Mat 𝑅)))
4037, 39ffvelrnd 6944 . . 3 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾)
412, 3, 23grprid 18525 . . 3 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
4233, 40, 41syl2anc 583 . 2 (𝜑 → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
4321, 31, 423eqtrd 2782 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ifcif 4456  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  Ringcrg 19698  CRingccrg 19699   Mat cmat 21464   maDet cmdat 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-evpm 19015  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-dsmm 20849  df-frlm 20864  df-mat 21465  df-mdet 21642
This theorem is referenced by:  maducoeval2  21697  matunitlindflem1  35700
  Copyright terms: Public domain W3C validator