MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetero Structured version   Visualization version   GIF version

Theorem mdetero 21311
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetero.d 𝐷 = (𝑁 maDet 𝑅)
mdetero.k 𝐾 = (Base‘𝑅)
mdetero.p + = (+g𝑅)
mdetero.t · = (.r𝑅)
mdetero.r (𝜑𝑅 ∈ CRing)
mdetero.n (𝜑𝑁 ∈ Fin)
mdetero.x ((𝜑𝑗𝑁) → 𝑋𝐾)
mdetero.y ((𝜑𝑗𝑁) → 𝑌𝐾)
mdetero.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetero.w (𝜑𝑊𝐾)
mdetero.i (𝜑𝐼𝑁)
mdetero.j (𝜑𝐽𝑁)
mdetero.ij (𝜑𝐼𝐽)
Assertion
Ref Expression
mdetero (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑋   𝑖,𝑌   𝑖,𝑊,𝑗   · ,𝑖,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetero
StepHypRef Expression
1 mdetero.d . . 3 𝐷 = (𝑁 maDet 𝑅)
2 mdetero.k . . 3 𝐾 = (Base‘𝑅)
3 mdetero.p . . 3 + = (+g𝑅)
4 mdetero.r . . 3 (𝜑𝑅 ∈ CRing)
5 mdetero.n . . 3 (𝜑𝑁 ∈ Fin)
6 mdetero.x . . . 4 ((𝜑𝑗𝑁) → 𝑋𝐾)
763adant2 1129 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
8 crngring 19378 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
94, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1131 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetero.w . . . . 5 (𝜑𝑊𝐾)
12113ad2ant1 1131 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑊𝐾)
13 mdetero.y . . . . 5 ((𝜑𝑗𝑁) → 𝑌𝐾)
14133adant2 1129 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
15 mdetero.t . . . . 5 · = (.r𝑅)
162, 15ringcl 19383 . . . 4 ((𝑅 ∈ Ring ∧ 𝑊𝐾𝑌𝐾) → (𝑊 · 𝑌) ∈ 𝐾)
1710, 12, 14, 16syl3anc 1369 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → (𝑊 · 𝑌) ∈ 𝐾)
18 mdetero.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1914, 18ifcld 4467 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐽, 𝑌, 𝑍) ∈ 𝐾)
20 mdetero.i . . 3 (𝜑𝐼𝑁)
211, 2, 3, 4, 5, 7, 17, 19, 20mdetrlin2 21308 . 2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))))
221, 2, 15, 4, 5, 14, 19, 11, 20mdetrsca2 21305 . . . 4 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝑊 · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))))
23 eqid 2759 . . . . . 6 (0g𝑅) = (0g𝑅)
24 mdetero.j . . . . . 6 (𝜑𝐽𝑁)
25 mdetero.ij . . . . . 6 (𝜑𝐼𝐽)
261, 2, 23, 4, 5, 13, 18, 20, 24, 25mdetralt2 21310 . . . . 5 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g𝑅))
2726oveq2d 7167 . . . 4 (𝜑 → (𝑊 · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))) = (𝑊 · (0g𝑅)))
282, 15, 23ringrz 19410 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑊𝐾) → (𝑊 · (0g𝑅)) = (0g𝑅))
299, 11, 28syl2anc 588 . . . 4 (𝜑 → (𝑊 · (0g𝑅)) = (0g𝑅))
3022, 27, 293eqtrd 2798 . . 3 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g𝑅))
3130oveq2d 7167 . 2 (𝜑 → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)))
32 ringgrp 19371 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
339, 32syl 17 . . 3 (𝜑𝑅 ∈ Grp)
34 eqid 2759 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
35 eqid 2759 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
361, 34, 35, 2mdetf 21296 . . . . 5 (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾)
374, 36syl 17 . . . 4 (𝜑𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾)
387, 19ifcld 4467 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)) ∈ 𝐾)
3934, 2, 35, 5, 4, 38matbas2d 21124 . . . 4 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))) ∈ (Base‘(𝑁 Mat 𝑅)))
4037, 39ffvelrnd 6844 . . 3 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾)
412, 3, 23grprid 18202 . . 3 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
4233, 40, 41syl2anc 588 . 2 (𝜑 → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
4321, 31, 423eqtrd 2798 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  ifcif 4421  wf 6332  cfv 6336  (class class class)co 7151  cmpo 7153  Fincfn 8528  Basecbs 16542  +gcplusg 16624  .rcmulr 16625  0gc0g 16772  Grpcgrp 18170  Ringcrg 19366  CRingccrg 19367   Mat cmat 21108   maDet cmdat 21285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-addf 10655  ax-mulf 10656
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-ot 4532  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-sup 8940  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-xnn0 12008  df-z 12022  df-dec 12139  df-uz 12284  df-rp 12432  df-fz 12941  df-fzo 13084  df-seq 13420  df-exp 13481  df-hash 13742  df-word 13915  df-lsw 13963  df-concat 13971  df-s1 13998  df-substr 14051  df-pfx 14081  df-splice 14160  df-reverse 14169  df-s2 14258  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-0g 16774  df-gsum 16775  df-prds 16780  df-pws 16782  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-mhm 18023  df-submnd 18024  df-efmnd 18101  df-grp 18173  df-minusg 18174  df-mulg 18293  df-subg 18344  df-ghm 18424  df-gim 18467  df-cntz 18515  df-oppg 18542  df-symg 18564  df-pmtr 18638  df-psgn 18687  df-evpm 18688  df-cmn 18976  df-abl 18977  df-mgp 19309  df-ur 19321  df-ring 19368  df-cring 19369  df-oppr 19445  df-dvdsr 19463  df-unit 19464  df-invr 19494  df-dvr 19505  df-rnghom 19539  df-drng 19573  df-subrg 19602  df-sra 20013  df-rgmod 20014  df-cnfld 20168  df-zring 20240  df-zrh 20274  df-dsmm 20498  df-frlm 20513  df-mat 21109  df-mdet 21286
This theorem is referenced by:  maducoeval2  21341  matunitlindflem1  35334
  Copyright terms: Public domain W3C validator