![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetero | Structured version Visualization version GIF version |
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetero.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetero.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetero.p | ⊢ + = (+g‘𝑅) |
mdetero.t | ⊢ · = (.r‘𝑅) |
mdetero.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetero.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetero.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetero.y | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
mdetero.z | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) |
mdetero.w | ⊢ (𝜑 → 𝑊 ∈ 𝐾) |
mdetero.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mdetero.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
mdetero.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
mdetero | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetero.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | mdetero.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | mdetero.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | mdetero.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | mdetero.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | mdetero.x | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
7 | 6 | 3adant2 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
8 | crngring 19976 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
9 | 4, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
11 | mdetero.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐾) | |
12 | 11 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑊 ∈ 𝐾) |
13 | mdetero.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
14 | 13 | 3adant2 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
15 | mdetero.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
16 | 2, 15 | ringcl 19981 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑊 · 𝑌) ∈ 𝐾) |
17 | 10, 12, 14, 16 | syl3anc 1371 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑊 · 𝑌) ∈ 𝐾) |
18 | mdetero.z | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) | |
19 | 14, 18 | ifcld 4532 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑌, 𝑍) ∈ 𝐾) |
20 | mdetero.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
21 | 1, 2, 3, 4, 5, 7, 17, 19, 20 | mdetrlin2 21956 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))))) |
22 | 1, 2, 15, 4, 5, 14, 19, 11, 20 | mdetrsca2 21953 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝑊 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))))) |
23 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
24 | mdetero.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
25 | mdetero.ij | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
26 | 1, 2, 23, 4, 5, 13, 18, 20, 24, 25 | mdetralt2 21958 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g‘𝑅)) |
27 | 26 | oveq2d 7373 | . . . 4 ⊢ (𝜑 → (𝑊 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))) = (𝑊 · (0g‘𝑅))) |
28 | 2, 15, 23 | ringrz 20012 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾) → (𝑊 · (0g‘𝑅)) = (0g‘𝑅)) |
29 | 9, 11, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊 · (0g‘𝑅)) = (0g‘𝑅)) |
30 | 22, 27, 29 | 3eqtrd 2780 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g‘𝑅)) |
31 | 30 | oveq2d 7373 | . 2 ⊢ (𝜑 → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅))) |
32 | ringgrp 19969 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
33 | 9, 32 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
34 | eqid 2736 | . . . . . 6 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
35 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
36 | 1, 34, 35, 2 | mdetf 21944 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
37 | 4, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
38 | 7, 19 | ifcld 4532 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)) ∈ 𝐾) |
39 | 34, 2, 35, 5, 4, 38 | matbas2d 21772 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))) ∈ (Base‘(𝑁 Mat 𝑅))) |
40 | 37, 39 | ffvelcdmd 7036 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) |
41 | 2, 3, 23 | grprid 18781 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
42 | 33, 40, 41 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
43 | 21, 31, 42 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ifcif 4486 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 Fincfn 8883 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 0gc0g 17321 Grpcgrp 18748 Ringcrg 19964 CRingccrg 19965 Mat cmat 21754 maDet cmdat 21933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-xnn0 12486 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-word 14403 df-lsw 14451 df-concat 14459 df-s1 14484 df-substr 14529 df-pfx 14559 df-splice 14638 df-reverse 14647 df-s2 14737 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-efmnd 18679 df-grp 18751 df-minusg 18752 df-mulg 18873 df-subg 18925 df-ghm 19006 df-gim 19049 df-cntz 19097 df-oppg 19124 df-symg 19149 df-pmtr 19224 df-psgn 19273 df-evpm 19274 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-subrg 20220 df-sra 20633 df-rgmod 20634 df-cnfld 20797 df-zring 20870 df-zrh 20904 df-dsmm 21138 df-frlm 21153 df-mat 21755 df-mdet 21934 |
This theorem is referenced by: maducoeval2 21989 matunitlindflem1 36074 |
Copyright terms: Public domain | W3C validator |