MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetero Structured version   Visualization version   GIF version

Theorem mdetero 22497
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetero.d 𝐷 = (𝑁 maDet 𝑅)
mdetero.k 𝐾 = (Base‘𝑅)
mdetero.p + = (+g𝑅)
mdetero.t · = (.r𝑅)
mdetero.r (𝜑𝑅 ∈ CRing)
mdetero.n (𝜑𝑁 ∈ Fin)
mdetero.x ((𝜑𝑗𝑁) → 𝑋𝐾)
mdetero.y ((𝜑𝑗𝑁) → 𝑌𝐾)
mdetero.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetero.w (𝜑𝑊𝐾)
mdetero.i (𝜑𝐼𝑁)
mdetero.j (𝜑𝐽𝑁)
mdetero.ij (𝜑𝐼𝐽)
Assertion
Ref Expression
mdetero (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑋   𝑖,𝑌   𝑖,𝑊,𝑗   · ,𝑖,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetero
StepHypRef Expression
1 mdetero.d . . 3 𝐷 = (𝑁 maDet 𝑅)
2 mdetero.k . . 3 𝐾 = (Base‘𝑅)
3 mdetero.p . . 3 + = (+g𝑅)
4 mdetero.r . . 3 (𝜑𝑅 ∈ CRing)
5 mdetero.n . . 3 (𝜑𝑁 ∈ Fin)
6 mdetero.x . . . 4 ((𝜑𝑗𝑁) → 𝑋𝐾)
763adant2 1131 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
8 crngring 20154 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
94, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1133 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetero.w . . . . 5 (𝜑𝑊𝐾)
12113ad2ant1 1133 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑊𝐾)
13 mdetero.y . . . . 5 ((𝜑𝑗𝑁) → 𝑌𝐾)
14133adant2 1131 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
15 mdetero.t . . . . 5 · = (.r𝑅)
162, 15ringcl 20159 . . . 4 ((𝑅 ∈ Ring ∧ 𝑊𝐾𝑌𝐾) → (𝑊 · 𝑌) ∈ 𝐾)
1710, 12, 14, 16syl3anc 1373 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → (𝑊 · 𝑌) ∈ 𝐾)
18 mdetero.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1914, 18ifcld 4535 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐽, 𝑌, 𝑍) ∈ 𝐾)
20 mdetero.i . . 3 (𝜑𝐼𝑁)
211, 2, 3, 4, 5, 7, 17, 19, 20mdetrlin2 22494 . 2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))))
221, 2, 15, 4, 5, 14, 19, 11, 20mdetrsca2 22491 . . . 4 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝑊 · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))))
23 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
24 mdetero.j . . . . . 6 (𝜑𝐽𝑁)
25 mdetero.ij . . . . . 6 (𝜑𝐼𝐽)
261, 2, 23, 4, 5, 13, 18, 20, 24, 25mdetralt2 22496 . . . . 5 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g𝑅))
2726oveq2d 7403 . . . 4 (𝜑 → (𝑊 · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))) = (𝑊 · (0g𝑅)))
282, 15, 23ringrz 20203 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑊𝐾) → (𝑊 · (0g𝑅)) = (0g𝑅))
299, 11, 28syl2anc 584 . . . 4 (𝜑 → (𝑊 · (0g𝑅)) = (0g𝑅))
3022, 27, 293eqtrd 2768 . . 3 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g𝑅))
3130oveq2d 7403 . 2 (𝜑 → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)))
32 ringgrp 20147 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
339, 32syl 17 . . 3 (𝜑𝑅 ∈ Grp)
34 eqid 2729 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
35 eqid 2729 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
361, 34, 35, 2mdetf 22482 . . . . 5 (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾)
374, 36syl 17 . . . 4 (𝜑𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾)
387, 19ifcld 4535 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)) ∈ 𝐾)
3934, 2, 35, 5, 4, 38matbas2d 22310 . . . 4 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))) ∈ (Base‘(𝑁 Mat 𝑅)))
4037, 39ffvelcdmd 7057 . . 3 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾)
412, 3, 23grprid 18900 . . 3 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
4233, 40, 41syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g𝑅)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
4321, 31, 423eqtrd 2768 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ifcif 4488  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  Ringcrg 20142  CRingccrg 20143   Mat cmat 22294   maDet cmdat 22471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-evpm 19422  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-mdet 22472
This theorem is referenced by:  maducoeval2  22527  matunitlindflem1  37610
  Copyright terms: Public domain W3C validator