Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdetero | Structured version Visualization version GIF version |
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetero.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetero.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetero.p | ⊢ + = (+g‘𝑅) |
mdetero.t | ⊢ · = (.r‘𝑅) |
mdetero.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetero.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetero.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetero.y | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
mdetero.z | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) |
mdetero.w | ⊢ (𝜑 → 𝑊 ∈ 𝐾) |
mdetero.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mdetero.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
mdetero.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
mdetero | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetero.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | mdetero.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | mdetero.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | mdetero.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | mdetero.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | mdetero.x | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
7 | 6 | 3adant2 1129 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
8 | crngring 19378 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
9 | 4, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | 9 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
11 | mdetero.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐾) | |
12 | 11 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑊 ∈ 𝐾) |
13 | mdetero.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
14 | 13 | 3adant2 1129 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
15 | mdetero.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
16 | 2, 15 | ringcl 19383 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑊 · 𝑌) ∈ 𝐾) |
17 | 10, 12, 14, 16 | syl3anc 1369 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑊 · 𝑌) ∈ 𝐾) |
18 | mdetero.z | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) | |
19 | 14, 18 | ifcld 4467 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑌, 𝑍) ∈ 𝐾) |
20 | mdetero.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
21 | 1, 2, 3, 4, 5, 7, 17, 19, 20 | mdetrlin2 21308 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))))) |
22 | 1, 2, 15, 4, 5, 14, 19, 11, 20 | mdetrsca2 21305 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝑊 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))))) |
23 | eqid 2759 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
24 | mdetero.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
25 | mdetero.ij | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
26 | 1, 2, 23, 4, 5, 13, 18, 20, 24, 25 | mdetralt2 21310 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g‘𝑅)) |
27 | 26 | oveq2d 7167 | . . . 4 ⊢ (𝜑 → (𝑊 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))) = (𝑊 · (0g‘𝑅))) |
28 | 2, 15, 23 | ringrz 19410 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾) → (𝑊 · (0g‘𝑅)) = (0g‘𝑅)) |
29 | 9, 11, 28 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (𝑊 · (0g‘𝑅)) = (0g‘𝑅)) |
30 | 22, 27, 29 | 3eqtrd 2798 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g‘𝑅)) |
31 | 30 | oveq2d 7167 | . 2 ⊢ (𝜑 → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅))) |
32 | ringgrp 19371 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
33 | 9, 32 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
34 | eqid 2759 | . . . . . 6 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
35 | eqid 2759 | . . . . . 6 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
36 | 1, 34, 35, 2 | mdetf 21296 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
37 | 4, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
38 | 7, 19 | ifcld 4467 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)) ∈ 𝐾) |
39 | 34, 2, 35, 5, 4, 38 | matbas2d 21124 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))) ∈ (Base‘(𝑁 Mat 𝑅))) |
40 | 37, 39 | ffvelrnd 6844 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) |
41 | 2, 3, 23 | grprid 18202 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
42 | 33, 40, 41 | syl2anc 588 | . 2 ⊢ (𝜑 → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
43 | 21, 31, 42 | 3eqtrd 2798 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ifcif 4421 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 Fincfn 8528 Basecbs 16542 +gcplusg 16624 .rcmulr 16625 0gc0g 16772 Grpcgrp 18170 Ringcrg 19366 CRingccrg 19367 Mat cmat 21108 maDet cmdat 21285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-addf 10655 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-sup 8940 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-xnn0 12008 df-z 12022 df-dec 12139 df-uz 12284 df-rp 12432 df-fz 12941 df-fzo 13084 df-seq 13420 df-exp 13481 df-hash 13742 df-word 13915 df-lsw 13963 df-concat 13971 df-s1 13998 df-substr 14051 df-pfx 14081 df-splice 14160 df-reverse 14169 df-s2 14258 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-hom 16648 df-cco 16649 df-0g 16774 df-gsum 16775 df-prds 16780 df-pws 16782 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mhm 18023 df-submnd 18024 df-efmnd 18101 df-grp 18173 df-minusg 18174 df-mulg 18293 df-subg 18344 df-ghm 18424 df-gim 18467 df-cntz 18515 df-oppg 18542 df-symg 18564 df-pmtr 18638 df-psgn 18687 df-evpm 18688 df-cmn 18976 df-abl 18977 df-mgp 19309 df-ur 19321 df-ring 19368 df-cring 19369 df-oppr 19445 df-dvdsr 19463 df-unit 19464 df-invr 19494 df-dvr 19505 df-rnghom 19539 df-drng 19573 df-subrg 19602 df-sra 20013 df-rgmod 20014 df-cnfld 20168 df-zring 20240 df-zrh 20274 df-dsmm 20498 df-frlm 20513 df-mat 21109 df-mdet 21286 |
This theorem is referenced by: maducoeval2 21341 matunitlindflem1 35334 |
Copyright terms: Public domain | W3C validator |