| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetero | Structured version Visualization version GIF version | ||
| Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetero.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetero.k | ⊢ 𝐾 = (Base‘𝑅) |
| mdetero.p | ⊢ + = (+g‘𝑅) |
| mdetero.t | ⊢ · = (.r‘𝑅) |
| mdetero.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mdetero.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mdetero.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| mdetero.y | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
| mdetero.z | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) |
| mdetero.w | ⊢ (𝜑 → 𝑊 ∈ 𝐾) |
| mdetero.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| mdetero.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
| mdetero.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| Ref | Expression |
|---|---|
| mdetero | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetero.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 2 | mdetero.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | mdetero.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | mdetero.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 5 | mdetero.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 6 | mdetero.x | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
| 7 | 6 | 3adant2 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| 8 | crngring 20165 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 9 | 4, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 11 | mdetero.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐾) | |
| 12 | 11 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑊 ∈ 𝐾) |
| 13 | mdetero.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
| 14 | 13 | 3adant2 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
| 15 | mdetero.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 16 | 2, 15 | ringcl 20170 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑊 · 𝑌) ∈ 𝐾) |
| 17 | 10, 12, 14, 16 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑊 · 𝑌) ∈ 𝐾) |
| 18 | mdetero.z | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) | |
| 19 | 14, 18 | ifcld 4521 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑌, 𝑍) ∈ 𝐾) |
| 20 | mdetero.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
| 21 | 1, 2, 3, 4, 5, 7, 17, 19, 20 | mdetrlin2 22523 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))))) |
| 22 | 1, 2, 15, 4, 5, 14, 19, 11, 20 | mdetrsca2 22520 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝑊 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))))) |
| 23 | eqid 2733 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 24 | mdetero.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
| 25 | mdetero.ij | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 26 | 1, 2, 23, 4, 5, 13, 18, 20, 24, 25 | mdetralt2 22525 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g‘𝑅)) |
| 27 | 26 | oveq2d 7368 | . . . 4 ⊢ (𝜑 → (𝑊 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, if(𝑖 = 𝐽, 𝑌, 𝑍))))) = (𝑊 · (0g‘𝑅))) |
| 28 | 2, 15, 23 | ringrz 20214 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾) → (𝑊 · (0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 9, 11, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊 · (0g‘𝑅)) = (0g‘𝑅)) |
| 30 | 22, 27, 29 | 3eqtrd 2772 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (0g‘𝑅)) |
| 31 | 30 | oveq2d 7368 | . 2 ⊢ (𝜑 → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑊 · 𝑌), if(𝑖 = 𝐽, 𝑌, 𝑍))))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅))) |
| 32 | ringgrp 20158 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 33 | 9, 32 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 34 | eqid 2733 | . . . . . 6 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 35 | eqid 2733 | . . . . . 6 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
| 36 | 1, 34, 35, 2 | mdetf 22511 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
| 37 | 4, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
| 38 | 7, 19 | ifcld 4521 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)) ∈ 𝐾) |
| 39 | 34, 2, 35, 5, 4, 38 | matbas2d 22339 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 40 | 37, 39 | ffvelcdmd 7024 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) |
| 41 | 2, 3, 23 | grprid 18883 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) ∈ 𝐾) → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
| 42 | 33, 40, 41 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍)))) + (0g‘𝑅)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
| 43 | 21, 31, 42 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ifcif 4474 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Fincfn 8875 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 0gc0g 17345 Grpcgrp 18848 Ringcrg 20153 CRingccrg 20154 Mat cmat 22323 maDet cmdat 22500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-splice 14659 df-reverse 14668 df-s2 14757 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-efmnd 18779 df-grp 18851 df-minusg 18852 df-mulg 18983 df-subg 19038 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 df-evpm 19406 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-drng 20648 df-sra 21109 df-rgmod 21110 df-cnfld 21294 df-zring 21386 df-zrh 21442 df-dsmm 21671 df-frlm 21686 df-mat 22324 df-mdet 22501 |
| This theorem is referenced by: maducoeval2 22556 matunitlindflem1 37676 |
| Copyright terms: Public domain | W3C validator |