MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lid Structured version   Visualization version   GIF version

Theorem pj1lid 19222
Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1lid ((𝜑𝑋𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋)

Proof of Theorem pj1lid
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
21adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → 𝑇 ∈ (SubGrp‘𝐺))
3 subgrcl 18675 . . . . . 6 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . 5 ((𝜑𝑋𝑇) → 𝐺 ∈ Grp)
5 eqid 2738 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
65subgss 18671 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
71, 6syl 17 . . . . . 6 (𝜑𝑇 ⊆ (Base‘𝐺))
87sselda 3917 . . . . 5 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘𝐺))
9 pj1eu.a . . . . . 6 + = (+g𝐺)
10 pj1eu.o . . . . . 6 0 = (0g𝐺)
115, 9, 10grprid 18525 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑋 + 0 ) = 𝑋)
124, 8, 11syl2anc 583 . . . 4 ((𝜑𝑋𝑇) → (𝑋 + 0 ) = 𝑋)
1312eqcomd 2744 . . 3 ((𝜑𝑋𝑇) → 𝑋 = (𝑋 + 0 ))
14 pj1eu.s . . . 4 = (LSSum‘𝐺)
15 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
16 pj1eu.3 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1716adantr 480 . . . 4 ((𝜑𝑋𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
18 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
1918adantr 480 . . . 4 ((𝜑𝑋𝑇) → (𝑇𝑈) = { 0 })
20 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
2120adantr 480 . . . 4 ((𝜑𝑋𝑇) → 𝑇 ⊆ (𝑍𝑈))
22 pj1f.p . . . 4 𝑃 = (proj1𝐺)
2314lsmub1 19177 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
241, 16, 23syl2anc 583 . . . . 5 (𝜑𝑇 ⊆ (𝑇 𝑈))
2524sselda 3917 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (𝑇 𝑈))
26 simpr 484 . . . 4 ((𝜑𝑋𝑇) → 𝑋𝑇)
2710subg0cl 18678 . . . . 5 (𝑈 ∈ (SubGrp‘𝐺) → 0𝑈)
2817, 27syl 17 . . . 4 ((𝜑𝑋𝑇) → 0𝑈)
299, 14, 10, 15, 2, 17, 19, 21, 22, 25, 26, 28pj1eq 19221 . . 3 ((𝜑𝑋𝑇) → (𝑋 = (𝑋 + 0 ) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 )))
3013, 29mpbid 231 . 2 ((𝜑𝑋𝑇) → (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 ))
3130simpld 494 1 ((𝜑𝑋𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  SubGrpcsubg 18664  Cntzccntz 18836  LSSumclsm 19154  proj1cpj1 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-pj1 19157
This theorem is referenced by:  dpjlid  19579  pjfo  20832
  Copyright terms: Public domain W3C validator