Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pj1lid | Structured version Visualization version GIF version |
Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | ⊢ + = (+g‘𝐺) |
pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1eu.o | ⊢ 0 = (0g‘𝐺) |
pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj1lid | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝐺)) |
3 | subgrcl 18741 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝐺 ∈ Grp) |
5 | eqid 2739 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | 5 | subgss 18737 | . . . . . . 7 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
8 | 7 | sselda 3925 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 ∈ (Base‘𝐺)) |
9 | pj1eu.a | . . . . . 6 ⊢ + = (+g‘𝐺) | |
10 | pj1eu.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
11 | 5, 9, 10 | grprid 18591 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑋 + 0 ) = 𝑋) |
12 | 4, 8, 11 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (𝑋 + 0 ) = 𝑋) |
13 | 12 | eqcomd 2745 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 = (𝑋 + 0 )) |
14 | pj1eu.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
15 | pj1eu.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
16 | pj1eu.3 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺)) |
18 | pj1eu.4 | . . . . 5 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (𝑇 ∩ 𝑈) = { 0 }) |
20 | pj1eu.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑇 ⊆ (𝑍‘𝑈)) |
22 | pj1f.p | . . . 4 ⊢ 𝑃 = (proj1‘𝐺) | |
23 | 14 | lsmub1 19243 | . . . . . 6 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
24 | 1, 16, 23 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
25 | 24 | sselda 3925 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 ∈ (𝑇 ⊕ 𝑈)) |
26 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 ∈ 𝑇) | |
27 | 10 | subg0cl 18744 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑈) |
28 | 17, 27 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 0 ∈ 𝑈) |
29 | 9, 14, 10, 15, 2, 17, 19, 21, 22, 25, 26, 28 | pj1eq 19287 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (𝑋 = (𝑋 + 0 ) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 ))) |
30 | 13, 29 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 )) |
31 | 30 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ⊆ wss 3891 {csn 4566 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 0gc0g 17131 Grpcgrp 18558 SubGrpcsubg 18730 Cntzccntz 18902 LSSumclsm 19220 proj1cpj1 19221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cntz 18904 df-lsm 19222 df-pj1 19223 |
This theorem is referenced by: dpjlid 19645 pjfo 20903 |
Copyright terms: Public domain | W3C validator |