Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pj1lid | Structured version Visualization version GIF version |
Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | ⊢ + = (+g‘𝐺) |
pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1eu.o | ⊢ 0 = (0g‘𝐺) |
pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj1lid | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
2 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝐺)) |
3 | subgrcl 18760 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝐺 ∈ Grp) |
5 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | 5 | subgss 18756 | . . . . . . 7 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
8 | 7 | sselda 3921 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 ∈ (Base‘𝐺)) |
9 | pj1eu.a | . . . . . 6 ⊢ + = (+g‘𝐺) | |
10 | pj1eu.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
11 | 5, 9, 10 | grprid 18610 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑋 + 0 ) = 𝑋) |
12 | 4, 8, 11 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (𝑋 + 0 ) = 𝑋) |
13 | 12 | eqcomd 2744 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 = (𝑋 + 0 )) |
14 | pj1eu.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
15 | pj1eu.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
16 | pj1eu.3 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
17 | 16 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺)) |
18 | pj1eu.4 | . . . . 5 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (𝑇 ∩ 𝑈) = { 0 }) |
20 | pj1eu.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
21 | 20 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑇 ⊆ (𝑍‘𝑈)) |
22 | pj1f.p | . . . 4 ⊢ 𝑃 = (proj1‘𝐺) | |
23 | 14 | lsmub1 19262 | . . . . . 6 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
24 | 1, 16, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
25 | 24 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 ∈ (𝑇 ⊕ 𝑈)) |
26 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 𝑋 ∈ 𝑇) | |
27 | 10 | subg0cl 18763 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑈) |
28 | 17, 27 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → 0 ∈ 𝑈) |
29 | 9, 14, 10, 15, 2, 17, 19, 21, 22, 25, 26, 28 | pj1eq 19306 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (𝑋 = (𝑋 + 0 ) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 ))) |
30 | 13, 29 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 )) |
31 | 30 | simpld 495 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 SubGrpcsubg 18749 Cntzccntz 18921 LSSumclsm 19239 proj1cpj1 19240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-pj1 19242 |
This theorem is referenced by: dpjlid 19664 pjfo 20922 |
Copyright terms: Public domain | W3C validator |