MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lid Structured version   Visualization version   GIF version

Theorem pj1lid 19288
Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1lid ((𝜑𝑋𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋)

Proof of Theorem pj1lid
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
21adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → 𝑇 ∈ (SubGrp‘𝐺))
3 subgrcl 18741 . . . . . 6 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . 5 ((𝜑𝑋𝑇) → 𝐺 ∈ Grp)
5 eqid 2739 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
65subgss 18737 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
71, 6syl 17 . . . . . 6 (𝜑𝑇 ⊆ (Base‘𝐺))
87sselda 3925 . . . . 5 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘𝐺))
9 pj1eu.a . . . . . 6 + = (+g𝐺)
10 pj1eu.o . . . . . 6 0 = (0g𝐺)
115, 9, 10grprid 18591 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑋 + 0 ) = 𝑋)
124, 8, 11syl2anc 583 . . . 4 ((𝜑𝑋𝑇) → (𝑋 + 0 ) = 𝑋)
1312eqcomd 2745 . . 3 ((𝜑𝑋𝑇) → 𝑋 = (𝑋 + 0 ))
14 pj1eu.s . . . 4 = (LSSum‘𝐺)
15 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
16 pj1eu.3 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1716adantr 480 . . . 4 ((𝜑𝑋𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
18 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
1918adantr 480 . . . 4 ((𝜑𝑋𝑇) → (𝑇𝑈) = { 0 })
20 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
2120adantr 480 . . . 4 ((𝜑𝑋𝑇) → 𝑇 ⊆ (𝑍𝑈))
22 pj1f.p . . . 4 𝑃 = (proj1𝐺)
2314lsmub1 19243 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
241, 16, 23syl2anc 583 . . . . 5 (𝜑𝑇 ⊆ (𝑇 𝑈))
2524sselda 3925 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (𝑇 𝑈))
26 simpr 484 . . . 4 ((𝜑𝑋𝑇) → 𝑋𝑇)
2710subg0cl 18744 . . . . 5 (𝑈 ∈ (SubGrp‘𝐺) → 0𝑈)
2817, 27syl 17 . . . 4 ((𝜑𝑋𝑇) → 0𝑈)
299, 14, 10, 15, 2, 17, 19, 21, 22, 25, 26, 28pj1eq 19287 . . 3 ((𝜑𝑋𝑇) → (𝑋 = (𝑋 + 0 ) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 )))
3013, 29mpbid 231 . 2 ((𝜑𝑋𝑇) → (((𝑇𝑃𝑈)‘𝑋) = 𝑋 ∧ ((𝑈𝑃𝑇)‘𝑋) = 0 ))
3130simpld 494 1 ((𝜑𝑋𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cin 3890  wss 3891  {csn 4566  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  0gc0g 17131  Grpcgrp 18558  SubGrpcsubg 18730  Cntzccntz 18902  LSSumclsm 19220  proj1cpj1 19221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-cntz 18904  df-lsm 19222  df-pj1 19223
This theorem is referenced by:  dpjlid  19645  pjfo  20903
  Copyright terms: Public domain W3C validator