MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odbezout Structured version   Visualization version   GIF version

Theorem odbezout 19544
Description: If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odbezout (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odbezout
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1193 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝑁 ∈ ℤ)
2 simpl2 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝐴𝑋)
3 odmulgid.1 . . . . . 6 𝑋 = (Base‘𝐺)
4 odmulgid.2 . . . . . 6 𝑂 = (od‘𝐺)
53, 4odcl 19522 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
62, 5syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℕ0)
76nn0zd 12622 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℤ)
8 bezout 16562 . . 3 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
91, 7, 8syl2anc 584 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
10 oveq1 7420 . . . . . . 7 (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) = (𝑁 gcd (𝑂𝐴)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
1110eqcoms 2742 . . . . . 6 ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
12 simpll1 1212 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
131adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
14 simprl 770 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
1513, 14zmulcld 12711 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ)
162adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
1716, 5syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℕ0)
1817nn0zd 12622 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℤ)
19 simprr 772 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2018, 19zmulcld 12711 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) · 𝑦) ∈ ℤ)
21 odmulgid.3 . . . . . . . . . 10 · = (.g𝐺)
22 eqid 2734 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
233, 21, 22mulgdir 19093 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ ∧ 𝐴𝑋)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2412, 15, 20, 16, 23syl13anc 1373 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2513zcnd 12706 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ)
2614zcnd 12706 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2725, 26mulcomd 11264 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁))
2827oveq1d 7428 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴))
293, 21mulgass 19098 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3012, 14, 13, 16, 29syl13anc 1373 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3128, 30eqtrd 2769 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
32 dvdsmul1 16297 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
3318, 19, 32syl2anc 584 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
34 eqid 2734 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
353, 4, 21, 34oddvds 19533 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3612, 16, 20, 35syl3anc 1372 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3733, 36mpbid 232 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺))
3831, 37oveq12d 7431 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)))
393, 21mulgcl 19078 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
4012, 13, 16, 39syl3anc 1372 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
413, 21mulgcl 19078 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
4212, 14, 40, 41syl3anc 1372 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
433, 22, 34grprid 18955 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4412, 42, 43syl2anc 584 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4538, 44eqtrd 2769 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴)))
4624, 45eqtrd 2769 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
47 simplr 768 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) = 1)
4847oveq1d 7428 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = (1 · 𝐴))
493, 21mulg1 19068 . . . . . . . . 9 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
5016, 49syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴)
5148, 50eqtrd 2769 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = 𝐴)
5246, 51eqeq12d 2750 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5311, 52imbitrid 244 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5453anassrs 467 . . . 4 (((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5554rexlimdva 3142 . . 3 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5655reximdva 3155 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
579, 56mpd 15 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413  1c1 11138   + caddc 11140   · cmul 11142  0cn0 12509  cz 12596  cdvds 16272   gcd cgcd 16513  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Grpcgrp 18920  .gcmg 19054  odcod 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-dvds 16273  df-gcd 16514  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-od 19514
This theorem is referenced by:  pgpfac1lem2  20063
  Copyright terms: Public domain W3C validator