MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odbezout Structured version   Visualization version   GIF version

Theorem odbezout 19558
Description: If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odbezout (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odbezout
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝑁 ∈ ℤ)
2 simpl2 1189 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝐴𝑋)
3 odmulgid.1 . . . . . 6 𝑋 = (Base‘𝐺)
4 odmulgid.2 . . . . . 6 𝑂 = (od‘𝐺)
53, 4odcl 19536 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
62, 5syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℕ0)
76nn0zd 12638 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℤ)
8 bezout 16546 . . 3 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
91, 7, 8syl2anc 582 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
10 oveq1 7433 . . . . . . 7 (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) = (𝑁 gcd (𝑂𝐴)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
1110eqcoms 2734 . . . . . 6 ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
12 simpll1 1209 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
131adantr 479 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
14 simprl 769 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
1513, 14zmulcld 12726 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ)
162adantr 479 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
1716, 5syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℕ0)
1817nn0zd 12638 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℤ)
19 simprr 771 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2018, 19zmulcld 12726 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) · 𝑦) ∈ ℤ)
21 odmulgid.3 . . . . . . . . . 10 · = (.g𝐺)
22 eqid 2726 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
233, 21, 22mulgdir 19102 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ ∧ 𝐴𝑋)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2412, 15, 20, 16, 23syl13anc 1369 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2513zcnd 12721 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ)
2614zcnd 12721 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2725, 26mulcomd 11287 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁))
2827oveq1d 7441 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴))
293, 21mulgass 19107 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3012, 14, 13, 16, 29syl13anc 1369 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3128, 30eqtrd 2766 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
32 dvdsmul1 16282 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
3318, 19, 32syl2anc 582 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
34 eqid 2726 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
353, 4, 21, 34oddvds 19547 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3612, 16, 20, 35syl3anc 1368 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3733, 36mpbid 231 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺))
3831, 37oveq12d 7444 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)))
393, 21mulgcl 19087 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
4012, 13, 16, 39syl3anc 1368 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
413, 21mulgcl 19087 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
4212, 14, 40, 41syl3anc 1368 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
433, 22, 34grprid 18965 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4412, 42, 43syl2anc 582 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4538, 44eqtrd 2766 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴)))
4624, 45eqtrd 2766 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
47 simplr 767 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) = 1)
4847oveq1d 7441 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = (1 · 𝐴))
493, 21mulg1 19077 . . . . . . . . 9 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
5016, 49syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴)
5148, 50eqtrd 2766 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = 𝐴)
5246, 51eqeq12d 2742 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5311, 52imbitrid 243 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5453anassrs 466 . . . 4 (((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5554rexlimdva 3145 . . 3 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5655reximdva 3158 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
579, 56mpd 15 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wrex 3060   class class class wbr 5155  cfv 6556  (class class class)co 7426  1c1 11161   + caddc 11163   · cmul 11165  0cn0 12526  cz 12612  cdvds 16258   gcd cgcd 16496  Basecbs 17215  +gcplusg 17268  0gc0g 17456  Grpcgrp 18930  .gcmg 19063  odcod 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-sup 9487  df-inf 9488  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-fz 13541  df-fl 13814  df-mod 13892  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-dvds 16259  df-gcd 16497  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-minusg 18934  df-sbg 18935  df-mulg 19064  df-od 19528
This theorem is referenced by:  pgpfac1lem2  20077
  Copyright terms: Public domain W3C validator