MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odbezout Structured version   Visualization version   GIF version

Theorem odbezout 19591
Description: If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odbezout (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odbezout
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1192 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝑁 ∈ ℤ)
2 simpl2 1191 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝐴𝑋)
3 odmulgid.1 . . . . . 6 𝑋 = (Base‘𝐺)
4 odmulgid.2 . . . . . 6 𝑂 = (od‘𝐺)
53, 4odcl 19569 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
62, 5syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℕ0)
76nn0zd 12637 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℤ)
8 bezout 16577 . . 3 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
91, 7, 8syl2anc 584 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
10 oveq1 7438 . . . . . . 7 (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) = (𝑁 gcd (𝑂𝐴)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
1110eqcoms 2743 . . . . . 6 ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
12 simpll1 1211 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
131adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
14 simprl 771 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
1513, 14zmulcld 12726 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ)
162adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
1716, 5syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℕ0)
1817nn0zd 12637 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℤ)
19 simprr 773 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2018, 19zmulcld 12726 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) · 𝑦) ∈ ℤ)
21 odmulgid.3 . . . . . . . . . 10 · = (.g𝐺)
22 eqid 2735 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
233, 21, 22mulgdir 19137 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ ∧ 𝐴𝑋)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2412, 15, 20, 16, 23syl13anc 1371 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2513zcnd 12721 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ)
2614zcnd 12721 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2725, 26mulcomd 11280 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁))
2827oveq1d 7446 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴))
293, 21mulgass 19142 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3012, 14, 13, 16, 29syl13anc 1371 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3128, 30eqtrd 2775 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
32 dvdsmul1 16312 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
3318, 19, 32syl2anc 584 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
34 eqid 2735 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
353, 4, 21, 34oddvds 19580 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3612, 16, 20, 35syl3anc 1370 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3733, 36mpbid 232 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺))
3831, 37oveq12d 7449 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)))
393, 21mulgcl 19122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
4012, 13, 16, 39syl3anc 1370 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
413, 21mulgcl 19122 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
4212, 14, 40, 41syl3anc 1370 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
433, 22, 34grprid 18999 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4412, 42, 43syl2anc 584 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4538, 44eqtrd 2775 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴)))
4624, 45eqtrd 2775 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
47 simplr 769 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) = 1)
4847oveq1d 7446 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = (1 · 𝐴))
493, 21mulg1 19112 . . . . . . . . 9 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
5016, 49syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴)
5148, 50eqtrd 2775 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = 𝐴)
5246, 51eqeq12d 2751 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5311, 52imbitrid 244 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5453anassrs 467 . . . 4 (((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5554rexlimdva 3153 . . 3 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5655reximdva 3166 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
579, 56mpd 15 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156   · cmul 11158  0cn0 12524  cz 12611  cdvds 16287   gcd cgcd 16528  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  .gcmg 19098  odcod 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-od 19561
This theorem is referenced by:  pgpfac1lem2  20110
  Copyright terms: Public domain W3C validator