| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl3 1193 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → 𝑁 ∈ ℤ) | 
| 2 |  | simpl2 1192 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → 𝐴 ∈ 𝑋) | 
| 3 |  | odmulgid.1 | . . . . . 6
⊢ 𝑋 = (Base‘𝐺) | 
| 4 |  | odmulgid.2 | . . . . . 6
⊢ 𝑂 = (od‘𝐺) | 
| 5 | 3, 4 | odcl 19555 | . . . . 5
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) | 
| 6 | 2, 5 | syl 17 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → (𝑂‘𝐴) ∈
ℕ0) | 
| 7 | 6 | nn0zd 12641 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → (𝑂‘𝐴) ∈ ℤ) | 
| 8 |  | bezout 16581 | . . 3
⊢ ((𝑁 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦))) | 
| 9 | 1, 7, 8 | syl2anc 584 | . 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦))) | 
| 10 |  | oveq1 7439 | . . . . . . 7
⊢ (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) = (𝑁 gcd (𝑂‘𝐴)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · 𝐴)) | 
| 11 | 10 | eqcoms 2744 | . . . . . 6
⊢ ((𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · 𝐴)) | 
| 12 |  | simpll1 1212 | . . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp) | 
| 13 | 1 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ) | 
| 14 |  | simprl 770 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | 
| 15 | 13, 14 | zmulcld 12730 | . . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ) | 
| 16 | 2 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ 𝑋) | 
| 17 | 16, 5 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) ∈
ℕ0) | 
| 18 | 17 | nn0zd 12641 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) ∈ ℤ) | 
| 19 |  | simprr 772 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | 
| 20 | 18, 19 | zmulcld 12730 | . . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) · 𝑦) ∈ ℤ) | 
| 21 |  | odmulgid.3 | . . . . . . . . . 10
⊢  · =
(.g‘𝐺) | 
| 22 |  | eqid 2736 | . . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 23 | 3, 21, 22 | mulgdir 19125 | . . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂‘𝐴) · 𝑦) ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴))) | 
| 24 | 12, 15, 20, 16, 23 | syl13anc 1373 | . . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴))) | 
| 25 | 13 | zcnd 12725 | . . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ) | 
| 26 | 14 | zcnd 12725 | . . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ) | 
| 27 | 25, 26 | mulcomd 11283 | . . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁)) | 
| 28 | 27 | oveq1d 7447 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴)) | 
| 29 | 3, 21 | mulgass 19130 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) | 
| 30 | 12, 14, 13, 16, 29 | syl13anc 1373 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) | 
| 31 | 28, 30 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) | 
| 32 |  | dvdsmul1 16316 | . . . . . . . . . . . 12
⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦)) | 
| 33 | 18, 19, 32 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦)) | 
| 34 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 35 | 3, 4, 21, 34 | oddvds 19566 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ((𝑂‘𝐴) · 𝑦) ∈ ℤ) → ((𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦) ↔ (((𝑂‘𝐴) · 𝑦) · 𝐴) = (0g‘𝐺))) | 
| 36 | 12, 16, 20, 35 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦) ↔ (((𝑂‘𝐴) · 𝑦) · 𝐴) = (0g‘𝐺))) | 
| 37 | 33, 36 | mpbid 232 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂‘𝐴) · 𝑦) · 𝐴) = (0g‘𝐺)) | 
| 38 | 31, 37 | oveq12d 7450 | . . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g‘𝐺)(0g‘𝐺))) | 
| 39 | 3, 21 | mulgcl 19110 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) | 
| 40 | 12, 13, 16, 39 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋) | 
| 41 | 3, 21 | mulgcl 19110 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) | 
| 42 | 12, 14, 40, 41 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) | 
| 43 | 3, 22, 34 | grprid 18987 | . . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g‘𝐺)(0g‘𝐺)) = (𝑥 · (𝑁 · 𝐴))) | 
| 44 | 12, 42, 43 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g‘𝐺)(0g‘𝐺)) = (𝑥 · (𝑁 · 𝐴))) | 
| 45 | 38, 44 | eqtrd 2776 | . . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴))) | 
| 46 | 24, 45 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) | 
| 47 |  | simplr 768 | . . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂‘𝐴)) = 1) | 
| 48 | 47 | oveq1d 7447 | . . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂‘𝐴)) · 𝐴) = (1 · 𝐴)) | 
| 49 | 3, 21 | mulg1 19100 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) | 
| 50 | 16, 49 | syl 17 | . . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴) | 
| 51 | 48, 50 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂‘𝐴)) · 𝐴) = 𝐴) | 
| 52 | 46, 51 | eqeq12d 2752 | . . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴)) | 
| 53 | 11, 52 | imbitrid 244 | . . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴)) | 
| 54 | 53 | anassrs 467 | . . . 4
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴)) | 
| 55 | 54 | rexlimdva 3154 | . . 3
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴)) | 
| 56 | 55 | reximdva 3167 | . 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)) | 
| 57 | 9, 56 | mpd 15 | 1
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴) |