Step | Hyp | Ref
| Expression |
1 | | simpl3 1191 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → 𝑁 ∈ ℤ) |
2 | | simpl2 1190 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → 𝐴 ∈ 𝑋) |
3 | | odmulgid.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
4 | | odmulgid.2 |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
5 | 3, 4 | odcl 19059 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
6 | 2, 5 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → (𝑂‘𝐴) ∈
ℕ0) |
7 | 6 | nn0zd 12353 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → (𝑂‘𝐴) ∈ ℤ) |
8 | | bezout 16179 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦))) |
9 | 1, 7, 8 | syl2anc 583 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦))) |
10 | | oveq1 7262 |
. . . . . . 7
⊢ (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) = (𝑁 gcd (𝑂‘𝐴)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · 𝐴)) |
11 | 10 | eqcoms 2746 |
. . . . . 6
⊢ ((𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · 𝐴)) |
12 | | simpll1 1210 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp) |
13 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ) |
14 | | simprl 767 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) |
15 | 13, 14 | zmulcld 12361 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ) |
16 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ 𝑋) |
17 | 16, 5 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) ∈
ℕ0) |
18 | 17 | nn0zd 12353 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) ∈ ℤ) |
19 | | simprr 769 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) |
20 | 18, 19 | zmulcld 12361 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) · 𝑦) ∈ ℤ) |
21 | | odmulgid.3 |
. . . . . . . . . 10
⊢ · =
(.g‘𝐺) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
23 | 3, 21, 22 | mulgdir 18650 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂‘𝐴) · 𝑦) ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴))) |
24 | 12, 15, 20, 16, 23 | syl13anc 1370 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴))) |
25 | 13 | zcnd 12356 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ) |
26 | 14 | zcnd 12356 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ) |
27 | 25, 26 | mulcomd 10927 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁)) |
28 | 27 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴)) |
29 | 3, 21 | mulgass 18655 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) |
30 | 12, 14, 13, 16, 29 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) |
31 | 28, 30 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) |
32 | | dvdsmul1 15915 |
. . . . . . . . . . . 12
⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦)) |
33 | 18, 19, 32 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦)) |
34 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
35 | 3, 4, 21, 34 | oddvds 19070 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ((𝑂‘𝐴) · 𝑦) ∈ ℤ) → ((𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦) ↔ (((𝑂‘𝐴) · 𝑦) · 𝐴) = (0g‘𝐺))) |
36 | 12, 16, 20, 35 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑦) ↔ (((𝑂‘𝐴) · 𝑦) · 𝐴) = (0g‘𝐺))) |
37 | 33, 36 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂‘𝐴) · 𝑦) · 𝐴) = (0g‘𝐺)) |
38 | 31, 37 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g‘𝐺)(0g‘𝐺))) |
39 | 3, 21 | mulgcl 18636 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) |
40 | 12, 13, 16, 39 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋) |
41 | 3, 21 | mulgcl 18636 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) |
42 | 12, 14, 40, 41 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) |
43 | 3, 22, 34 | grprid 18525 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g‘𝐺)(0g‘𝐺)) = (𝑥 · (𝑁 · 𝐴))) |
44 | 12, 42, 43 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g‘𝐺)(0g‘𝐺)) = (𝑥 · (𝑁 · 𝐴))) |
45 | 38, 44 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g‘𝐺)(((𝑂‘𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴))) |
46 | 24, 45 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴))) |
47 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂‘𝐴)) = 1) |
48 | 47 | oveq1d 7270 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂‘𝐴)) · 𝐴) = (1 · 𝐴)) |
49 | 3, 21 | mulg1 18626 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) |
50 | 16, 49 | syl 17 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴) |
51 | 48, 50 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂‘𝐴)) · 𝐴) = 𝐴) |
52 | 46, 51 | eqeq12d 2754 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴)) |
53 | 11, 52 | syl5ib 243 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴)) |
54 | 53 | anassrs 467 |
. . . 4
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴)) |
55 | 54 | rexlimdva 3212 |
. . 3
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴)) |
56 | 55 | reximdva 3202 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂‘𝐴)) = ((𝑁 · 𝑥) + ((𝑂‘𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)) |
57 | 9, 56 | mpd 15 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴) |