MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odbezout Structured version   Visualization version   GIF version

Theorem odbezout 19600
Description: If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odbezout (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odbezout
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1193 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝑁 ∈ ℤ)
2 simpl2 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝐴𝑋)
3 odmulgid.1 . . . . . 6 𝑋 = (Base‘𝐺)
4 odmulgid.2 . . . . . 6 𝑂 = (od‘𝐺)
53, 4odcl 19578 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
62, 5syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℕ0)
76nn0zd 12665 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℤ)
8 bezout 16590 . . 3 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
91, 7, 8syl2anc 583 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
10 oveq1 7455 . . . . . . 7 (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) = (𝑁 gcd (𝑂𝐴)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
1110eqcoms 2748 . . . . . 6 ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
12 simpll1 1212 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
131adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
14 simprl 770 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
1513, 14zmulcld 12753 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ)
162adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
1716, 5syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℕ0)
1817nn0zd 12665 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℤ)
19 simprr 772 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2018, 19zmulcld 12753 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) · 𝑦) ∈ ℤ)
21 odmulgid.3 . . . . . . . . . 10 · = (.g𝐺)
22 eqid 2740 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
233, 21, 22mulgdir 19146 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ ∧ 𝐴𝑋)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2412, 15, 20, 16, 23syl13anc 1372 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2513zcnd 12748 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ)
2614zcnd 12748 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2725, 26mulcomd 11311 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁))
2827oveq1d 7463 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴))
293, 21mulgass 19151 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3012, 14, 13, 16, 29syl13anc 1372 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3128, 30eqtrd 2780 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
32 dvdsmul1 16326 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
3318, 19, 32syl2anc 583 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
34 eqid 2740 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
353, 4, 21, 34oddvds 19589 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3612, 16, 20, 35syl3anc 1371 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3733, 36mpbid 232 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺))
3831, 37oveq12d 7466 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)))
393, 21mulgcl 19131 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
4012, 13, 16, 39syl3anc 1371 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
413, 21mulgcl 19131 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
4212, 14, 40, 41syl3anc 1371 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
433, 22, 34grprid 19008 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4412, 42, 43syl2anc 583 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4538, 44eqtrd 2780 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴)))
4624, 45eqtrd 2780 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
47 simplr 768 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) = 1)
4847oveq1d 7463 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = (1 · 𝐴))
493, 21mulg1 19121 . . . . . . . . 9 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
5016, 49syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴)
5148, 50eqtrd 2780 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = 𝐴)
5246, 51eqeq12d 2756 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5311, 52imbitrid 244 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5453anassrs 467 . . . 4 (((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5554rexlimdva 3161 . . 3 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5655reximdva 3174 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
579, 56mpd 15 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187   · cmul 11189  0cn0 12553  cz 12639  cdvds 16302   gcd cgcd 16540  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  .gcmg 19107  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-od 19570
This theorem is referenced by:  pgpfac1lem2  20119
  Copyright terms: Public domain W3C validator