![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ftc1 25558. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
ftc1.g | β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) |
ftc1.a | β’ (π β π΄ β β) |
ftc1.b | β’ (π β π΅ β β) |
ftc1.le | β’ (π β π΄ β€ π΅) |
ftc1.s | β’ (π β (π΄(,)π΅) β π·) |
ftc1.d | β’ (π β π· β β) |
ftc1.i | β’ (π β πΉ β πΏ1) |
ftc1a.f | β’ (π β πΉ:π·βΆβ) |
Ref | Expression |
---|---|
ftc1lem2 | β’ (π β πΊ:(π΄[,]π΅)βΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6906 | . . 3 β’ (((π β§ π₯ β (π΄[,]π΅)) β§ π‘ β (π΄(,)π₯)) β (πΉβπ‘) β V) | |
2 | ftc1.b | . . . . . . . 8 β’ (π β π΅ β β) | |
3 | 2 | adantr 481 | . . . . . . 7 β’ ((π β§ π₯ β (π΄[,]π΅)) β π΅ β β) |
4 | 3 | rexrd 11263 | . . . . . 6 β’ ((π β§ π₯ β (π΄[,]π΅)) β π΅ β β*) |
5 | ftc1.a | . . . . . . . . 9 β’ (π β π΄ β β) | |
6 | elicc2 13388 | . . . . . . . . 9 β’ ((π΄ β β β§ π΅ β β) β (π₯ β (π΄[,]π΅) β (π₯ β β β§ π΄ β€ π₯ β§ π₯ β€ π΅))) | |
7 | 5, 2, 6 | syl2anc 584 | . . . . . . . 8 β’ (π β (π₯ β (π΄[,]π΅) β (π₯ β β β§ π΄ β€ π₯ β§ π₯ β€ π΅))) |
8 | 7 | biimpa 477 | . . . . . . 7 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π₯ β β β§ π΄ β€ π₯ β§ π₯ β€ π΅)) |
9 | 8 | simp3d 1144 | . . . . . 6 β’ ((π β§ π₯ β (π΄[,]π΅)) β π₯ β€ π΅) |
10 | iooss2 13359 | . . . . . 6 β’ ((π΅ β β* β§ π₯ β€ π΅) β (π΄(,)π₯) β (π΄(,)π΅)) | |
11 | 4, 9, 10 | syl2anc 584 | . . . . 5 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π΄(,)π₯) β (π΄(,)π΅)) |
12 | ftc1.s | . . . . . 6 β’ (π β (π΄(,)π΅) β π·) | |
13 | 12 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π΄(,)π΅) β π·) |
14 | 11, 13 | sstrd 3992 | . . . 4 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π΄(,)π₯) β π·) |
15 | ioombl 25081 | . . . . 5 β’ (π΄(,)π₯) β dom vol | |
16 | 15 | a1i 11 | . . . 4 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π΄(,)π₯) β dom vol) |
17 | fvexd 6906 | . . . 4 β’ (((π β§ π₯ β (π΄[,]π΅)) β§ π‘ β π·) β (πΉβπ‘) β V) | |
18 | ftc1a.f | . . . . . . 7 β’ (π β πΉ:π·βΆβ) | |
19 | 18 | feqmptd 6960 | . . . . . 6 β’ (π β πΉ = (π‘ β π· β¦ (πΉβπ‘))) |
20 | ftc1.i | . . . . . 6 β’ (π β πΉ β πΏ1) | |
21 | 19, 20 | eqeltrrd 2834 | . . . . 5 β’ (π β (π‘ β π· β¦ (πΉβπ‘)) β πΏ1) |
22 | 21 | adantr 481 | . . . 4 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π‘ β π· β¦ (πΉβπ‘)) β πΏ1) |
23 | 14, 16, 17, 22 | iblss 25321 | . . 3 β’ ((π β§ π₯ β (π΄[,]π΅)) β (π‘ β (π΄(,)π₯) β¦ (πΉβπ‘)) β πΏ1) |
24 | 1, 23 | itgcl 25300 | . 2 β’ ((π β§ π₯ β (π΄[,]π΅)) β β«(π΄(,)π₯)(πΉβπ‘) dπ‘ β β) |
25 | ftc1.g | . 2 β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) | |
26 | 24, 25 | fmptd 7113 | 1 β’ (π β πΊ:(π΄[,]π΅)βΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 β*cxr 11246 β€ cle 11248 (,)cioo 13323 [,]cicc 13326 volcvol 24979 πΏ1cibl 25133 β«citg 25134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xadd 13092 df-ioo 13327 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 df-xmet 20936 df-met 20937 df-ovol 24980 df-vol 24981 df-mbf 25135 df-itg1 25136 df-itg2 25137 df-ibl 25138 df-itg 25139 |
This theorem is referenced by: ftc1a 25553 ftc1lem5 25556 ftc1lem6 25557 ftc1 25558 ftc1cn 25559 ftc1cnnc 36555 ftc1anc 36564 |
Copyright terms: Public domain | W3C validator |