![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ftc1 24242. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
ftc1a.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
Ref | Expression |
---|---|
ftc1lem2 | ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6461 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → (𝐹‘𝑡) ∈ V) | |
2 | ftc1.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | adantr 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
4 | 3 | rexrd 10426 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
5 | ftc1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | elicc2 12550 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
7 | 5, 2, 6 | syl2anc 579 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
8 | 7 | biimpa 470 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
9 | 8 | simp3d 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
10 | iooss2 12523 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) | |
11 | 4, 9, 10 | syl2anc 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
12 | ftc1.s | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝐵) ⊆ 𝐷) |
14 | 11, 13 | sstrd 3830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ 𝐷) |
15 | ioombl 23769 | . . . . 5 ⊢ (𝐴(,)𝑥) ∈ dom vol | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol) |
17 | fvexd 6461 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ V) | |
18 | ftc1a.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
19 | 18 | feqmptd 6509 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
20 | ftc1.i | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
21 | 19, 20 | eqeltrrd 2859 | . . . . 5 ⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
22 | 21 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
23 | 14, 16, 17, 22 | iblss 24008 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
24 | 1, 23 | itgcl 23987 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡 ∈ ℂ) |
25 | ftc1.g | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
26 | 24, 25 | fmptd 6648 | 1 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 class class class wbr 4886 ↦ cmpt 4965 dom cdm 5355 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ℝcr 10271 ℝ*cxr 10410 ≤ cle 10412 (,)cioo 12487 [,]cicc 12490 volcvol 23667 𝐿1cibl 23821 ∫citg 23822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-ofr 7175 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-rp 12138 df-xadd 12258 df-ioo 12491 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-mod 12988 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-rlim 14628 df-sum 14825 df-xmet 20135 df-met 20136 df-ovol 23668 df-vol 23669 df-mbf 23823 df-itg1 23824 df-itg2 23825 df-ibl 23826 df-itg 23827 |
This theorem is referenced by: ftc1a 24237 ftc1lem5 24240 ftc1lem6 24241 ftc1 24242 ftc1cn 24243 ftc1cnnc 34104 ftc1anc 34113 |
Copyright terms: Public domain | W3C validator |