MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem2 Structured version   Visualization version   GIF version

Theorem ftc1lem2 25921
Description: Lemma for ftc1 25927. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)(πΉβ€˜π‘‘) d𝑑)
ftc1.a (πœ‘ β†’ 𝐴 ∈ ℝ)
ftc1.b (πœ‘ β†’ 𝐡 ∈ ℝ)
ftc1.le (πœ‘ β†’ 𝐴 ≀ 𝐡)
ftc1.s (πœ‘ β†’ (𝐴(,)𝐡) βŠ† 𝐷)
ftc1.d (πœ‘ β†’ 𝐷 βŠ† ℝ)
ftc1.i (πœ‘ β†’ 𝐹 ∈ 𝐿1)
ftc1a.f (πœ‘ β†’ 𝐹:π·βŸΆβ„‚)
Assertion
Ref Expression
ftc1lem2 (πœ‘ β†’ 𝐺:(𝐴[,]𝐡)βŸΆβ„‚)
Distinct variable groups:   π‘₯,𝑑,𝐷   𝑑,𝐴,π‘₯   𝑑,𝐡,π‘₯   πœ‘,𝑑,π‘₯   𝑑,𝐹,π‘₯
Allowed substitution hints:   𝐺(π‘₯,𝑑)

Proof of Theorem ftc1lem2
StepHypRef Expression
1 fvexd 6899 . . 3 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ 𝑑 ∈ (𝐴(,)π‘₯)) β†’ (πΉβ€˜π‘‘) ∈ V)
2 ftc1.b . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ ℝ)
32adantr 480 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ)
43rexrd 11265 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ*)
5 ftc1.a . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ ℝ)
6 elicc2 13392 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
75, 2, 6syl2anc 583 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
87biimpa 476 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡))
98simp3d 1141 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ≀ 𝐡)
10 iooss2 13363 . . . . . 6 ((𝐡 ∈ ℝ* ∧ π‘₯ ≀ 𝐡) β†’ (𝐴(,)π‘₯) βŠ† (𝐴(,)𝐡))
114, 9, 10syl2anc 583 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) βŠ† (𝐴(,)𝐡))
12 ftc1.s . . . . . 6 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† 𝐷)
1312adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)𝐡) βŠ† 𝐷)
1411, 13sstrd 3987 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) βŠ† 𝐷)
15 ioombl 25444 . . . . 5 (𝐴(,)π‘₯) ∈ dom vol
1615a1i 11 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) ∈ dom vol)
17 fvexd 6899 . . . 4 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ 𝑑 ∈ 𝐷) β†’ (πΉβ€˜π‘‘) ∈ V)
18 ftc1a.f . . . . . . 7 (πœ‘ β†’ 𝐹:π·βŸΆβ„‚)
1918feqmptd 6953 . . . . . 6 (πœ‘ β†’ 𝐹 = (𝑑 ∈ 𝐷 ↦ (πΉβ€˜π‘‘)))
20 ftc1.i . . . . . 6 (πœ‘ β†’ 𝐹 ∈ 𝐿1)
2119, 20eqeltrrd 2828 . . . . 5 (πœ‘ β†’ (𝑑 ∈ 𝐷 ↦ (πΉβ€˜π‘‘)) ∈ 𝐿1)
2221adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝑑 ∈ 𝐷 ↦ (πΉβ€˜π‘‘)) ∈ 𝐿1)
2314, 16, 17, 22iblss 25684 . . 3 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝑑 ∈ (𝐴(,)π‘₯) ↦ (πΉβ€˜π‘‘)) ∈ 𝐿1)
241, 23itgcl 25663 . 2 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ ∫(𝐴(,)π‘₯)(πΉβ€˜π‘‘) d𝑑 ∈ β„‚)
25 ftc1.g . 2 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)(πΉβ€˜π‘‘) d𝑑)
2624, 25fmptd 7108 1 (πœ‘ β†’ 𝐺:(𝐴[,]𝐡)βŸΆβ„‚)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3468   βŠ† wss 3943   class class class wbr 5141   ↦ cmpt 5224  dom cdm 5669  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  β„‚cc 11107  β„cr 11108  β„*cxr 11248   ≀ cle 11250  (,)cioo 13327  [,]cicc 13330  volcvol 25342  πΏ1cibl 25496  βˆ«citg 25497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-n0 12474  df-z 12560  df-uz 12824  df-q 12934  df-rp 12978  df-xadd 13096  df-ioo 13331  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-fl 13760  df-mod 13838  df-seq 13970  df-exp 14030  df-hash 14293  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186  df-clim 15435  df-rlim 15436  df-sum 15636  df-xmet 21228  df-met 21229  df-ovol 25343  df-vol 25344  df-mbf 25498  df-itg1 25499  df-itg2 25500  df-ibl 25501  df-itg 25502
This theorem is referenced by:  ftc1a  25922  ftc1lem5  25925  ftc1lem6  25926  ftc1  25927  ftc1cn  25928  ftc1cnnc  37072  ftc1anc  37081
  Copyright terms: Public domain W3C validator