![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ftc1 26068. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
ftc1a.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
Ref | Expression |
---|---|
ftc1lem2 | ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6916 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → (𝐹‘𝑡) ∈ V) | |
2 | ftc1.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
4 | 3 | rexrd 11314 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
5 | ftc1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | elicc2 13443 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
7 | 5, 2, 6 | syl2anc 582 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
8 | 7 | biimpa 475 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
9 | 8 | simp3d 1141 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
10 | iooss2 13414 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) | |
11 | 4, 9, 10 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
12 | ftc1.s | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
13 | 12 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝐵) ⊆ 𝐷) |
14 | 11, 13 | sstrd 3990 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ 𝐷) |
15 | ioombl 25585 | . . . . 5 ⊢ (𝐴(,)𝑥) ∈ dom vol | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol) |
17 | fvexd 6916 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ V) | |
18 | ftc1a.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
19 | 18 | feqmptd 6971 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
20 | ftc1.i | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
21 | 19, 20 | eqeltrrd 2827 | . . . . 5 ⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
22 | 21 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
23 | 14, 16, 17, 22 | iblss 25825 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
24 | 1, 23 | itgcl 25804 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡 ∈ ℂ) |
25 | ftc1.g | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
26 | 24, 25 | fmptd 7128 | 1 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 ↦ cmpt 5236 dom cdm 5682 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 ℝcr 11157 ℝ*cxr 11297 ≤ cle 11299 (,)cioo 13378 [,]cicc 13381 volcvol 25483 𝐿1cibl 25637 ∫citg 25638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-ofr 7691 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-oi 9553 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-rp 13029 df-xadd 13147 df-ioo 13382 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-rlim 15491 df-sum 15691 df-xmet 21336 df-met 21337 df-ovol 25484 df-vol 25485 df-mbf 25639 df-itg1 25640 df-itg2 25641 df-ibl 25642 df-itg 25643 |
This theorem is referenced by: ftc1a 26063 ftc1lem5 26066 ftc1lem6 26067 ftc1 26068 ftc1cn 26069 ftc1cnnc 37393 ftc1anc 37402 |
Copyright terms: Public domain | W3C validator |