| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ftc1 25979. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| Ref | Expression |
|---|---|
| ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| ftc1a.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| Ref | Expression |
|---|---|
| ftc1lem2 | ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6845 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → (𝐹‘𝑡) ∈ V) | |
| 2 | ftc1.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 4 | 3 | rexrd 11171 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
| 5 | ftc1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 6 | elicc2 13315 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 7 | 5, 2, 6 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 8 | 7 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 9 | 8 | simp3d 1144 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 10 | iooss2 13285 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) | |
| 11 | 4, 9, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
| 12 | ftc1.s | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝐵) ⊆ 𝐷) |
| 14 | 11, 13 | sstrd 3941 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ 𝐷) |
| 15 | ioombl 25496 | . . . . 5 ⊢ (𝐴(,)𝑥) ∈ dom vol | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol) |
| 17 | fvexd 6845 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ V) | |
| 18 | ftc1a.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
| 19 | 18 | feqmptd 6898 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
| 20 | ftc1.i | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 21 | 19, 20 | eqeltrrd 2834 | . . . . 5 ⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
| 23 | 14, 16, 17, 22 | iblss 25736 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
| 24 | 1, 23 | itgcl 25715 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡 ∈ ℂ) |
| 25 | ftc1.g | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 26 | 24, 25 | fmptd 7055 | 1 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 ℝ*cxr 11154 ≤ cle 11156 (,)cioo 13249 [,]cicc 13252 volcvol 25394 𝐿1cibl 25548 ∫citg 25549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-ofr 7619 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-xadd 13016 df-ioo 13253 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-xmet 21288 df-met 21289 df-ovol 25395 df-vol 25396 df-mbf 25550 df-itg1 25551 df-itg2 25552 df-ibl 25553 df-itg 25554 |
| This theorem is referenced by: ftc1a 25974 ftc1lem5 25977 ftc1lem6 25978 ftc1 25979 ftc1cn 25980 ftc1cnnc 37755 ftc1anc 37764 |
| Copyright terms: Public domain | W3C validator |