| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hypcgr | Structured version Visualization version GIF version | ||
| Description: If the catheti of two right-angled triangles are congruent, so is their hypothenuse. Theorem 10.12 of [Schwabhauser] p. 91. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
| Ref | Expression |
|---|---|
| hypcgr.p | ⊢ 𝑃 = (Base‘𝐺) |
| hypcgr.m | ⊢ − = (dist‘𝐺) |
| hypcgr.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hypcgr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hypcgr.h | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| hypcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hypcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hypcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hypcgr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| hypcgr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| hypcgr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| hypcgr.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| hypcgr.2 | ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |
| hypcgr.3 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| hypcgr.4 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| Ref | Expression |
|---|---|
| hypcgr | ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hypcgr.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | hypcgr.m | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | hypcgr.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | hypcgr.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | hypcgr.h | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 6 | hypcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | hypcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | hypcgr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | eqid 2733 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 10 | eqid 2733 | . . . 4 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 11 | hypcgr.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 12 | 1, 2, 3, 4, 5, 7, 11 | midcl 28758 | . . . 4 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐸) ∈ 𝑃) |
| 13 | eqid 2733 | . . . 4 ⊢ ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸)) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸)) | |
| 14 | hypcgr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 15 | 1, 2, 3, 9, 10, 4, 12, 13, 14 | mircl 28642 | . . 3 ⊢ (𝜑 → (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) ∈ 𝑃) |
| 16 | 1, 2, 3, 9, 10, 4, 12, 13, 11 | mircl 28642 | . . 3 ⊢ (𝜑 → (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) ∈ 𝑃) |
| 17 | hypcgr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 18 | 1, 2, 3, 9, 10, 4, 12, 13, 17 | mircl 28642 | . . 3 ⊢ (𝜑 → (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹) ∈ 𝑃) |
| 19 | hypcgr.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
| 20 | hypcgr.2 | . . . 4 ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) | |
| 21 | 1, 2, 3, 9, 10, 4, 14, 11, 17, 20, 13, 12 | mirrag 28682 | . . 3 ⊢ (𝜑 → 〈“(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹)”〉 ∈ (∟G‘𝐺)) |
| 22 | hypcgr.3 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | |
| 23 | 1, 2, 3, 9, 10, 4, 12, 13, 14, 11 | miriso 28651 | . . . 4 ⊢ (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸)) = (𝐷 − 𝐸)) |
| 24 | 22, 23 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸))) |
| 25 | hypcgr.4 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | |
| 26 | 1, 2, 3, 9, 10, 4, 12, 13, 11, 17 | miriso 28651 | . . . 4 ⊢ (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹)) = (𝐸 − 𝐹)) |
| 27 | 25, 26 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))) |
| 28 | 1, 2, 3, 4, 5, 11, 7 | midcom 28763 | . . . 4 ⊢ (𝜑 → (𝐸(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐸)) |
| 29 | 1, 2, 3, 4, 5, 11, 7, 10, 12 | ismidb 28759 | . . . 4 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) ↔ (𝐸(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐸))) |
| 30 | 28, 29 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸)) |
| 31 | eqid 2733 | . . 3 ⊢ ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))(LineG‘𝐺)𝐵)) | |
| 32 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 18, 19, 21, 24, 27, 30, 31 | hypcgrlem2 28781 | . 2 ⊢ (𝜑 → (𝐴 − 𝐶) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))) |
| 33 | 1, 2, 3, 9, 10, 4, 12, 13, 14, 17 | miriso 28651 | . 2 ⊢ (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹)) = (𝐷 − 𝐹)) |
| 34 | 32, 33 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 2c2 12189 〈“cs3 14753 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 DimTarskiG≥cstrkgld 28412 Itvcitv 28414 LineGclng 28415 pInvGcmir 28633 ∟Gcrag 28674 midGcmid 28753 lInvGclmi 28754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkgld 28433 df-trkg 28434 df-cgrg 28492 df-ismt 28514 df-leg 28564 df-mir 28634 df-rag 28675 df-perpg 28677 df-mid 28755 df-lmi 28756 |
| This theorem is referenced by: trgcopy 28785 |
| Copyright terms: Public domain | W3C validator |