| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hypcgr | Structured version Visualization version GIF version | ||
| Description: If the catheti of two right-angled triangles are congruent, so is their hypothenuse. Theorem 10.12 of [Schwabhauser] p. 91. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
| Ref | Expression |
|---|---|
| hypcgr.p | ⊢ 𝑃 = (Base‘𝐺) |
| hypcgr.m | ⊢ − = (dist‘𝐺) |
| hypcgr.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hypcgr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hypcgr.h | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| hypcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hypcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hypcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hypcgr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| hypcgr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| hypcgr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| hypcgr.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| hypcgr.2 | ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |
| hypcgr.3 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| hypcgr.4 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| Ref | Expression |
|---|---|
| hypcgr | ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hypcgr.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | hypcgr.m | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | hypcgr.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | hypcgr.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | hypcgr.h | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 6 | hypcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | hypcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | hypcgr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | eqid 2729 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 10 | eqid 2729 | . . . 4 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 11 | hypcgr.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 12 | 1, 2, 3, 4, 5, 7, 11 | midcl 28740 | . . . 4 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐸) ∈ 𝑃) |
| 13 | eqid 2729 | . . . 4 ⊢ ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸)) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸)) | |
| 14 | hypcgr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 15 | 1, 2, 3, 9, 10, 4, 12, 13, 14 | mircl 28624 | . . 3 ⊢ (𝜑 → (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) ∈ 𝑃) |
| 16 | 1, 2, 3, 9, 10, 4, 12, 13, 11 | mircl 28624 | . . 3 ⊢ (𝜑 → (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) ∈ 𝑃) |
| 17 | hypcgr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 18 | 1, 2, 3, 9, 10, 4, 12, 13, 17 | mircl 28624 | . . 3 ⊢ (𝜑 → (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹) ∈ 𝑃) |
| 19 | hypcgr.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
| 20 | hypcgr.2 | . . . 4 ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) | |
| 21 | 1, 2, 3, 9, 10, 4, 14, 11, 17, 20, 13, 12 | mirrag 28664 | . . 3 ⊢ (𝜑 → 〈“(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹)”〉 ∈ (∟G‘𝐺)) |
| 22 | hypcgr.3 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | |
| 23 | 1, 2, 3, 9, 10, 4, 12, 13, 14, 11 | miriso 28633 | . . . 4 ⊢ (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸)) = (𝐷 − 𝐸)) |
| 24 | 22, 23 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸))) |
| 25 | hypcgr.4 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | |
| 26 | 1, 2, 3, 9, 10, 4, 12, 13, 11, 17 | miriso 28633 | . . . 4 ⊢ (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹)) = (𝐸 − 𝐹)) |
| 27 | 25, 26 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))) |
| 28 | 1, 2, 3, 4, 5, 11, 7 | midcom 28745 | . . . 4 ⊢ (𝜑 → (𝐸(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐸)) |
| 29 | 1, 2, 3, 4, 5, 11, 7, 10, 12 | ismidb 28741 | . . . 4 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸) ↔ (𝐸(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐸))) |
| 30 | 28, 29 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐸)) |
| 31 | eqid 2729 | . . 3 ⊢ ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)(((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))(LineG‘𝐺)𝐵)) | |
| 32 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 18, 19, 21, 24, 27, 30, 31 | hypcgrlem2 28763 | . 2 ⊢ (𝜑 → (𝐴 − 𝐶) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹))) |
| 33 | 1, 2, 3, 9, 10, 4, 12, 13, 14, 17 | miriso 28633 | . 2 ⊢ (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐷) − (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐸))‘𝐹)) = (𝐷 − 𝐹)) |
| 34 | 32, 33 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 2c2 12201 〈“cs3 14767 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 DimTarskiG≥cstrkgld 28394 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 ∟Gcrag 28656 midGcmid 28735 lInvGclmi 28736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkgld 28415 df-trkg 28416 df-cgrg 28474 df-ismt 28496 df-leg 28546 df-mir 28616 df-rag 28657 df-perpg 28659 df-mid 28737 df-lmi 28738 |
| This theorem is referenced by: trgcopy 28767 |
| Copyright terms: Public domain | W3C validator |