| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirrag | Structured version Visualization version GIF version | ||
| Description: Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
| Ref | Expression |
|---|---|
| israg.p | ⊢ 𝑃 = (Base‘𝐺) |
| israg.d | ⊢ − = (dist‘𝐺) |
| israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
| israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| ragmir.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| mirrag.m | ⊢ 𝑀 = (𝑆‘𝐷) |
| mirrag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirrag | ⊢ (𝜑 → 〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | israg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | israg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | israg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | israg.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | israg.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirrag.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 8 | mirrag.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐷) | |
| 9 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | israg.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
| 13 | 1, 2, 3, 4, 5, 6, 11, 12, 10 | mircl 28640 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
| 14 | ragmir.1 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
| 15 | 1, 2, 3, 4, 5, 6, 9, 11, 10 | israg 28676 | . . . . 5 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
| 16 | 14, 15 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 13, 16 | mircgrs 28652 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘𝐶)) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐵)‘𝐶)))) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 | mirmir2 28653 | . . . 4 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐵)‘𝐶)) = ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶))) |
| 19 | 18 | oveq2d 7362 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐵)‘𝐶))) = ((𝑀‘𝐴) − ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶)))) |
| 20 | 17, 19 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘𝐶)) = ((𝑀‘𝐴) − ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶)))) |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 28640 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mircl 28640 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | mircl 28640 | . . 3 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
| 24 | 1, 2, 3, 4, 5, 6, 21, 22, 23 | israg 28676 | . 2 ⊢ (𝜑 → (〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺) ↔ ((𝑀‘𝐴) − (𝑀‘𝐶)) = ((𝑀‘𝐴) − ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶))))) |
| 25 | 20, 24 | mpbird 257 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 〈“cs3 14749 Basecbs 17120 distcds 17170 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 pInvGcmir 28631 ∟Gcrag 28672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 df-mir 28632 df-rag 28673 |
| This theorem is referenced by: colperpexlem1 28709 hypcgrlem2 28779 hypcgr 28780 |
| Copyright terms: Public domain | W3C validator |