Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirrag | Structured version Visualization version GIF version |
Description: Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragmir.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
mirrag.m | ⊢ 𝑀 = (𝑆‘𝐷) |
mirrag.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
Ref | Expression |
---|---|
mirrag | ⊢ (𝜑 → 〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | israg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | israg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | israg.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | israg.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirrag.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | mirrag.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐷) | |
9 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | israg.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | eqid 2739 | . . . . 5 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
13 | 1, 2, 3, 4, 5, 6, 11, 12, 10 | mircl 27003 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
14 | ragmir.1 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
15 | 1, 2, 3, 4, 5, 6, 9, 11, 10 | israg 27039 | . . . . 5 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
16 | 14, 15 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 13, 16 | mircgrs 27015 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘𝐶)) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐵)‘𝐶)))) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 | mirmir2 27016 | . . . 4 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐵)‘𝐶)) = ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶))) |
19 | 18 | oveq2d 7284 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐵)‘𝐶))) = ((𝑀‘𝐴) − ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶)))) |
20 | 17, 19 | eqtrd 2779 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘𝐶)) = ((𝑀‘𝐴) − ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶)))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 27003 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mircl 27003 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | mircl 27003 | . . 3 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
24 | 1, 2, 3, 4, 5, 6, 21, 22, 23 | israg 27039 | . 2 ⊢ (𝜑 → (〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺) ↔ ((𝑀‘𝐴) − (𝑀‘𝐶)) = ((𝑀‘𝐴) − ((𝑆‘(𝑀‘𝐵))‘(𝑀‘𝐶))))) |
25 | 20, 24 | mpbird 256 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 〈“cs3 14536 Basecbs 16893 distcds 16952 TarskiGcstrkg 26769 Itvcitv 26775 LineGclng 26776 pInvGcmir 26994 ∟Gcrag 27035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-concat 14255 df-s1 14282 df-s2 14542 df-s3 14543 df-trkgc 26790 df-trkgb 26791 df-trkgcb 26792 df-trkg 26795 df-cgrg 26853 df-mir 26995 df-rag 27036 |
This theorem is referenced by: colperpexlem1 27072 hypcgrlem2 27142 hypcgr 27143 |
Copyright terms: Public domain | W3C validator |