Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirrag | Structured version Visualization version GIF version |
Description: Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
Ref | Expression |
---|---|
israg.p | β’ π = (BaseβπΊ) |
israg.d | β’ β = (distβπΊ) |
israg.i | β’ πΌ = (ItvβπΊ) |
israg.l | β’ πΏ = (LineGβπΊ) |
israg.s | β’ π = (pInvGβπΊ) |
israg.g | β’ (π β πΊ β TarskiG) |
israg.a | β’ (π β π΄ β π) |
israg.b | β’ (π β π΅ β π) |
israg.c | β’ (π β πΆ β π) |
ragmir.1 | β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
mirrag.m | β’ π = (πβπ·) |
mirrag.d | β’ (π β π· β π) |
Ref | Expression |
---|---|
mirrag | β’ (π β β¨β(πβπ΄)(πβπ΅)(πβπΆ)ββ© β (βGβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | israg.d | . . . 4 β’ β = (distβπΊ) | |
3 | israg.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
4 | israg.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
5 | israg.s | . . . 4 β’ π = (pInvGβπΊ) | |
6 | israg.g | . . . 4 β’ (π β πΊ β TarskiG) | |
7 | mirrag.d | . . . 4 β’ (π β π· β π) | |
8 | mirrag.m | . . . 4 β’ π = (πβπ·) | |
9 | israg.a | . . . 4 β’ (π β π΄ β π) | |
10 | israg.c | . . . 4 β’ (π β πΆ β π) | |
11 | israg.b | . . . . 5 β’ (π β π΅ β π) | |
12 | eqid 2736 | . . . . 5 β’ (πβπ΅) = (πβπ΅) | |
13 | 1, 2, 3, 4, 5, 6, 11, 12, 10 | mircl 27311 | . . . 4 β’ (π β ((πβπ΅)βπΆ) β π) |
14 | ragmir.1 | . . . . 5 β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) | |
15 | 1, 2, 3, 4, 5, 6, 9, 11, 10 | israg 27347 | . . . . 5 β’ (π β (β¨βπ΄π΅πΆββ© β (βGβπΊ) β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ)))) |
16 | 14, 15 | mpbid 231 | . . . 4 β’ (π β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ))) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 13, 16 | mircgrs 27323 | . . 3 β’ (π β ((πβπ΄) β (πβπΆ)) = ((πβπ΄) β (πβ((πβπ΅)βπΆ)))) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 | mirmir2 27324 | . . . 4 β’ (π β (πβ((πβπ΅)βπΆ)) = ((πβ(πβπ΅))β(πβπΆ))) |
19 | 18 | oveq2d 7353 | . . 3 β’ (π β ((πβπ΄) β (πβ((πβπ΅)βπΆ))) = ((πβπ΄) β ((πβ(πβπ΅))β(πβπΆ)))) |
20 | 17, 19 | eqtrd 2776 | . 2 β’ (π β ((πβπ΄) β (πβπΆ)) = ((πβπ΄) β ((πβ(πβπ΅))β(πβπΆ)))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 27311 | . . 3 β’ (π β (πβπ΄) β π) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mircl 27311 | . . 3 β’ (π β (πβπ΅) β π) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | mircl 27311 | . . 3 β’ (π β (πβπΆ) β π) |
24 | 1, 2, 3, 4, 5, 6, 21, 22, 23 | israg 27347 | . 2 β’ (π β (β¨β(πβπ΄)(πβπ΅)(πβπΆ)ββ© β (βGβπΊ) β ((πβπ΄) β (πβπΆ)) = ((πβπ΄) β ((πβ(πβπ΅))β(πβπΆ))))) |
25 | 20, 24 | mpbird 256 | 1 β’ (π β β¨β(πβπ΄)(πβπ΅)(πβπΆ)ββ© β (βGβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6479 (class class class)co 7337 β¨βcs3 14654 Basecbs 17009 distcds 17068 TarskiGcstrkg 27077 Itvcitv 27083 LineGclng 27084 pInvGcmir 27302 βGcrag 27343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-concat 14374 df-s1 14400 df-s2 14660 df-s3 14661 df-trkgc 27098 df-trkgb 27099 df-trkgcb 27100 df-trkg 27103 df-cgrg 27161 df-mir 27303 df-rag 27344 |
This theorem is referenced by: colperpexlem1 27380 hypcgrlem2 27450 hypcgr 27451 |
Copyright terms: Public domain | W3C validator |