![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > miduniq1 | Structured version Visualization version GIF version |
Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
miduniq1.a | β’ (π β π΄ β π) |
miduniq1.b | β’ (π β π΅ β π) |
miduniq1.x | β’ (π β π β π) |
miduniq1.e | β’ (π β ((πβπ΄)βπ) = ((πβπ΅)βπ)) |
Ref | Expression |
---|---|
miduniq1 | β’ (π β π΄ = π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 β’ π = (BaseβπΊ) | |
2 | mirval.d | . 2 β’ β = (distβπΊ) | |
3 | mirval.i | . 2 β’ πΌ = (ItvβπΊ) | |
4 | mirval.l | . 2 β’ πΏ = (LineGβπΊ) | |
5 | mirval.s | . 2 β’ π = (pInvGβπΊ) | |
6 | mirval.g | . 2 β’ (π β πΊ β TarskiG) | |
7 | miduniq1.a | . 2 β’ (π β π΄ β π) | |
8 | miduniq1.b | . 2 β’ (π β π΅ β π) | |
9 | miduniq1.x | . 2 β’ (π β π β π) | |
10 | eqid 2728 | . . 3 β’ (πβπ΄) = (πβπ΄) | |
11 | 1, 2, 3, 4, 5, 6, 7, 10, 9 | mircl 28493 | . 2 β’ (π β ((πβπ΄)βπ) β π) |
12 | eqidd 2729 | . 2 β’ (π β ((πβπ΄)βπ) = ((πβπ΄)βπ)) | |
13 | miduniq1.e | . . 3 β’ (π β ((πβπ΄)βπ) = ((πβπ΅)βπ)) | |
14 | 13 | eqcomd 2734 | . 2 β’ (π β ((πβπ΅)βπ) = ((πβπ΄)βπ)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14 | miduniq 28517 | 1 β’ (π β π΄ = π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6553 Basecbs 17189 distcds 17251 TarskiGcstrkg 28259 Itvcitv 28265 LineGclng 28266 pInvGcmir 28484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-oadd 8499 df-er 8733 df-pm 8856 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-dju 9934 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-xnn0 12585 df-z 12599 df-uz 12863 df-fz 13527 df-fzo 13670 df-hash 14332 df-word 14507 df-concat 14563 df-s1 14588 df-s2 14841 df-s3 14842 df-trkgc 28280 df-trkgb 28281 df-trkgcb 28282 df-trkg 28285 df-cgrg 28343 df-mir 28485 |
This theorem is referenced by: miduniq2 28519 mideulem2 28566 |
Copyright terms: Public domain | W3C validator |