Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > miduniq1 | Structured version Visualization version GIF version |
Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
miduniq1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
miduniq1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
miduniq1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miduniq1.e | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = ((𝑆‘𝐵)‘𝑋)) |
Ref | Expression |
---|---|
miduniq1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . 2 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | miduniq1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | miduniq1.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | miduniq1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
10 | eqid 2737 | . . 3 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
11 | 1, 2, 3, 4, 5, 6, 7, 10, 9 | mircl 27131 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) ∈ 𝑃) |
12 | eqidd 2738 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = ((𝑆‘𝐴)‘𝑋)) | |
13 | miduniq1.e | . . 3 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = ((𝑆‘𝐵)‘𝑋)) | |
14 | 13 | eqcomd 2743 | . 2 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = ((𝑆‘𝐴)‘𝑋)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14 | miduniq 27155 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 Basecbs 16982 distcds 17041 TarskiGcstrkg 26897 Itvcitv 26903 LineGclng 26904 pInvGcmir 27122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-oadd 8348 df-er 8546 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-xnn0 12379 df-z 12393 df-uz 12656 df-fz 13313 df-fzo 13456 df-hash 14118 df-word 14290 df-concat 14346 df-s1 14373 df-s2 14633 df-s3 14634 df-trkgc 26918 df-trkgb 26919 df-trkgcb 26920 df-trkg 26923 df-cgrg 26981 df-mir 27123 |
This theorem is referenced by: miduniq2 27157 mideulem2 27204 |
Copyright terms: Public domain | W3C validator |