Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnring0g2d | Structured version Visualization version GIF version |
Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
Ref | Expression |
---|---|
mnring0g2d.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnring0g2d.2 | ⊢ 0 = (0g‘𝑅) |
mnring0g2d.3 | ⊢ 𝐴 = (Base‘𝑀) |
mnring0g2d.4 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mnring0g2d.5 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnring0g2d | ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnring0g2d.4 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mnring0g2d.3 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
3 | 2 | fvexi 6740 | . . 3 ⊢ 𝐴 ∈ V |
4 | eqid 2738 | . . . 4 ⊢ (𝑅 freeLMod 𝐴) = (𝑅 freeLMod 𝐴) | |
5 | mnring0g2d.2 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | frlm0 20729 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ V) → (𝐴 × { 0 }) = (0g‘(𝑅 freeLMod 𝐴))) |
7 | 1, 3, 6 | sylancl 589 | . 2 ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘(𝑅 freeLMod 𝐴))) |
8 | mnring0g2d.1 | . . 3 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
9 | mnring0g2d.5 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
10 | 8, 2, 4, 1, 9 | mnring0gd 41527 | . 2 ⊢ (𝜑 → (0g‘(𝑅 freeLMod 𝐴)) = (0g‘𝐹)) |
11 | 7, 10 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 Vcvv 3415 {csn 4550 × cxp 5558 ‘cfv 6389 (class class class)co 7222 Basecbs 16773 0gc0g 16957 Ringcrg 19575 freeLMod cfrlm 20721 MndRing cmnring 41517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-map 8519 df-ixp 8588 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-sup 9071 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-7 11911 df-8 11912 df-9 11913 df-n0 12104 df-z 12190 df-dec 12307 df-uz 12452 df-fz 13109 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-sca 16831 df-vsca 16832 df-ip 16833 df-tset 16834 df-ple 16835 df-ds 16837 df-hom 16839 df-cco 16840 df-0g 16959 df-prds 16965 df-pws 16967 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-grp 18381 df-minusg 18382 df-sbg 18383 df-subg 18553 df-mgp 19518 df-ur 19530 df-ring 19577 df-subrg 19811 df-lmod 19914 df-lss 19982 df-sra 20222 df-rgmod 20223 df-dsmm 20707 df-frlm 20722 df-mnring 41518 |
This theorem is referenced by: mnringmulrcld 41534 |
Copyright terms: Public domain | W3C validator |