| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2divscan4d | Structured version Visualization version GIF version | ||
| Description: Cancellation law for divison by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.) |
| Ref | Expression |
|---|---|
| pw2divscan4d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| pw2divscan4d.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0s) |
| pw2divscan4d.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0s) |
| Ref | Expression |
|---|---|
| pw2divscan4d | ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sno 28342 | . . . . . . 7 ⊢ 2s ∈ No | |
| 2 | pw2divscan4d.2 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0s) | |
| 3 | pw2divscan4d.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0s) | |
| 4 | expadds 28358 | . . . . . . 7 ⊢ ((2s ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 𝑀 ∈ ℕ0s) → (2s↑s(𝑁 +s 𝑀)) = ((2s↑s𝑁) ·s (2s↑s𝑀))) | |
| 5 | 1, 2, 3, 4 | mp3an2i 1468 | . . . . . 6 ⊢ (𝜑 → (2s↑s(𝑁 +s 𝑀)) = ((2s↑s𝑁) ·s (2s↑s𝑀))) |
| 6 | 5 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) = (((2s↑s𝑁) ·s (2s↑s𝑀)) ·s 𝐴)) |
| 7 | expscl 28354 | . . . . . . 7 ⊢ ((2s ∈ No ∧ 𝑁 ∈ ℕ0s) → (2s↑s𝑁) ∈ No ) | |
| 8 | 1, 2, 7 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2s↑s𝑁) ∈ No ) |
| 9 | expscl 28354 | . . . . . . 7 ⊢ ((2s ∈ No ∧ 𝑀 ∈ ℕ0s) → (2s↑s𝑀) ∈ No ) | |
| 10 | 1, 3, 9 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2s↑s𝑀) ∈ No ) |
| 11 | pw2divscan4d.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 12 | 8, 10, 11 | mulsassd 28106 | . . . . 5 ⊢ (𝜑 → (((2s↑s𝑁) ·s (2s↑s𝑀)) ·s 𝐴) = ((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴))) |
| 13 | 6, 12 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) = ((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴))) |
| 14 | 13 | oveq1d 7361 | . . 3 ⊢ (𝜑 → (((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) = (((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴)) /su (2s↑s(𝑁 +s 𝑀)))) |
| 15 | n0addscl 28272 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0s ∧ 𝑀 ∈ ℕ0s) → (𝑁 +s 𝑀) ∈ ℕ0s) | |
| 16 | 2, 3, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁 +s 𝑀) ∈ ℕ0s) |
| 17 | 11, 16 | pw2divscan3d 28364 | . . 3 ⊢ (𝜑 → (((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) = 𝐴) |
| 18 | 10, 11 | mulscld 28074 | . . . 4 ⊢ (𝜑 → ((2s↑s𝑀) ·s 𝐴) ∈ No ) |
| 19 | 8, 18, 16 | pw2divsassd 28366 | . . 3 ⊢ (𝜑 → (((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴)) /su (2s↑s(𝑁 +s 𝑀))) = ((2s↑s𝑁) ·s (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))))) |
| 20 | 14, 17, 19 | 3eqtr3rd 2775 | . 2 ⊢ (𝜑 → ((2s↑s𝑁) ·s (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) = 𝐴) |
| 21 | 18, 16 | pw2divscld 28362 | . . 3 ⊢ (𝜑 → (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) ∈ No ) |
| 22 | 11, 21, 2 | pw2divsmuld 28363 | . 2 ⊢ (𝜑 → ((𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) ↔ ((2s↑s𝑁) ·s (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) = 𝐴)) |
| 23 | 20, 22 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 No csur 27578 +s cadds 27902 ·s cmuls 28045 /su cdivs 28126 ℕ0scnn0s 28242 2sc2s 28333 ↑scexps 28335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 df-muls 28046 df-divs 28127 df-seqs 28214 df-n0s 28244 df-nns 28245 df-zs 28303 df-2s 28334 df-exps 28336 |
| This theorem is referenced by: pw2cut2 28382 zs12addscl 28387 zs12half 28390 |
| Copyright terms: Public domain | W3C validator |