| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2divscan4d | Structured version Visualization version GIF version | ||
| Description: Cancellation law for divison by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.) |
| Ref | Expression |
|---|---|
| pw2divscan4d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| pw2divscan4d.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0s) |
| pw2divscan4d.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0s) |
| Ref | Expression |
|---|---|
| pw2divscan4d | ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sno 28311 | . . . . . . 7 ⊢ 2s ∈ No | |
| 2 | pw2divscan4d.2 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0s) | |
| 3 | pw2divscan4d.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0s) | |
| 4 | expadds 28327 | . . . . . . 7 ⊢ ((2s ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 𝑀 ∈ ℕ0s) → (2s↑s(𝑁 +s 𝑀)) = ((2s↑s𝑁) ·s (2s↑s𝑀))) | |
| 5 | 1, 2, 3, 4 | mp3an2i 1468 | . . . . . 6 ⊢ (𝜑 → (2s↑s(𝑁 +s 𝑀)) = ((2s↑s𝑁) ·s (2s↑s𝑀))) |
| 6 | 5 | oveq1d 7364 | . . . . 5 ⊢ (𝜑 → ((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) = (((2s↑s𝑁) ·s (2s↑s𝑀)) ·s 𝐴)) |
| 7 | expscl 28323 | . . . . . . 7 ⊢ ((2s ∈ No ∧ 𝑁 ∈ ℕ0s) → (2s↑s𝑁) ∈ No ) | |
| 8 | 1, 2, 7 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2s↑s𝑁) ∈ No ) |
| 9 | expscl 28323 | . . . . . . 7 ⊢ ((2s ∈ No ∧ 𝑀 ∈ ℕ0s) → (2s↑s𝑀) ∈ No ) | |
| 10 | 1, 3, 9 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2s↑s𝑀) ∈ No ) |
| 11 | pw2divscan4d.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 12 | 8, 10, 11 | mulsassd 28075 | . . . . 5 ⊢ (𝜑 → (((2s↑s𝑁) ·s (2s↑s𝑀)) ·s 𝐴) = ((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴))) |
| 13 | 6, 12 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) = ((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴))) |
| 14 | 13 | oveq1d 7364 | . . 3 ⊢ (𝜑 → (((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) = (((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴)) /su (2s↑s(𝑁 +s 𝑀)))) |
| 15 | n0addscl 28241 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0s ∧ 𝑀 ∈ ℕ0s) → (𝑁 +s 𝑀) ∈ ℕ0s) | |
| 16 | 2, 3, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁 +s 𝑀) ∈ ℕ0s) |
| 17 | 11, 16 | pw2divscan3d 28333 | . . 3 ⊢ (𝜑 → (((2s↑s(𝑁 +s 𝑀)) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) = 𝐴) |
| 18 | 10, 11 | mulscld 28043 | . . . 4 ⊢ (𝜑 → ((2s↑s𝑀) ·s 𝐴) ∈ No ) |
| 19 | 8, 18, 16 | pw2divsassd 28335 | . . 3 ⊢ (𝜑 → (((2s↑s𝑁) ·s ((2s↑s𝑀) ·s 𝐴)) /su (2s↑s(𝑁 +s 𝑀))) = ((2s↑s𝑁) ·s (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))))) |
| 20 | 14, 17, 19 | 3eqtr3rd 2773 | . 2 ⊢ (𝜑 → ((2s↑s𝑁) ·s (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) = 𝐴) |
| 21 | 18, 16 | pw2divscld 28331 | . . 3 ⊢ (𝜑 → (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) ∈ No ) |
| 22 | 11, 21, 2 | pw2divsmuld 28332 | . 2 ⊢ (𝜑 → ((𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀))) ↔ ((2s↑s𝑁) ·s (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) = 𝐴)) |
| 23 | 20, 22 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 No csur 27549 +s cadds 27871 ·s cmuls 28014 /su cdivs 28095 ℕ0scnn0s 28211 2sc2s 28302 ↑scexps 28304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-1s 27739 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec 27850 df-norec2 27861 df-adds 27872 df-negs 27932 df-subs 27933 df-muls 28015 df-divs 28096 df-seqs 28183 df-n0s 28213 df-nns 28214 df-zs 28272 df-2s 28303 df-exps 28305 |
| This theorem is referenced by: zs12addscl 28354 zs12half 28357 |
| Copyright terms: Public domain | W3C validator |