MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2divscan4d Structured version   Visualization version   GIF version

Theorem pw2divscan4d 28336
Description: Cancellation law for divison by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.)
Hypotheses
Ref Expression
pw2divscan4d.1 (𝜑𝐴 No )
pw2divscan4d.2 (𝜑𝑁 ∈ ℕ0s)
pw2divscan4d.3 (𝜑𝑀 ∈ ℕ0s)
Assertion
Ref Expression
pw2divscan4d (𝜑 → (𝐴 /su (2ss𝑁)) = (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))))

Proof of Theorem pw2divscan4d
StepHypRef Expression
1 2sno 28311 . . . . . . 7 2s No
2 pw2divscan4d.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ0s)
3 pw2divscan4d.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ0s)
4 expadds 28327 . . . . . . 7 ((2s No 𝑁 ∈ ℕ0s𝑀 ∈ ℕ0s) → (2ss(𝑁 +s 𝑀)) = ((2ss𝑁) ·s (2ss𝑀)))
51, 2, 3, 4mp3an2i 1468 . . . . . 6 (𝜑 → (2ss(𝑁 +s 𝑀)) = ((2ss𝑁) ·s (2ss𝑀)))
65oveq1d 7364 . . . . 5 (𝜑 → ((2ss(𝑁 +s 𝑀)) ·s 𝐴) = (((2ss𝑁) ·s (2ss𝑀)) ·s 𝐴))
7 expscl 28323 . . . . . . 7 ((2s No 𝑁 ∈ ℕ0s) → (2ss𝑁) ∈ No )
81, 2, 7sylancr 587 . . . . . 6 (𝜑 → (2ss𝑁) ∈ No )
9 expscl 28323 . . . . . . 7 ((2s No 𝑀 ∈ ℕ0s) → (2ss𝑀) ∈ No )
101, 3, 9sylancr 587 . . . . . 6 (𝜑 → (2ss𝑀) ∈ No )
11 pw2divscan4d.1 . . . . . 6 (𝜑𝐴 No )
128, 10, 11mulsassd 28075 . . . . 5 (𝜑 → (((2ss𝑁) ·s (2ss𝑀)) ·s 𝐴) = ((2ss𝑁) ·s ((2ss𝑀) ·s 𝐴)))
136, 12eqtrd 2764 . . . 4 (𝜑 → ((2ss(𝑁 +s 𝑀)) ·s 𝐴) = ((2ss𝑁) ·s ((2ss𝑀) ·s 𝐴)))
1413oveq1d 7364 . . 3 (𝜑 → (((2ss(𝑁 +s 𝑀)) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))) = (((2ss𝑁) ·s ((2ss𝑀) ·s 𝐴)) /su (2ss(𝑁 +s 𝑀))))
15 n0addscl 28241 . . . . 5 ((𝑁 ∈ ℕ0s𝑀 ∈ ℕ0s) → (𝑁 +s 𝑀) ∈ ℕ0s)
162, 3, 15syl2anc 584 . . . 4 (𝜑 → (𝑁 +s 𝑀) ∈ ℕ0s)
1711, 16pw2divscan3d 28333 . . 3 (𝜑 → (((2ss(𝑁 +s 𝑀)) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))) = 𝐴)
1810, 11mulscld 28043 . . . 4 (𝜑 → ((2ss𝑀) ·s 𝐴) ∈ No )
198, 18, 16pw2divsassd 28335 . . 3 (𝜑 → (((2ss𝑁) ·s ((2ss𝑀) ·s 𝐴)) /su (2ss(𝑁 +s 𝑀))) = ((2ss𝑁) ·s (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀)))))
2014, 17, 193eqtr3rd 2773 . 2 (𝜑 → ((2ss𝑁) ·s (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀)))) = 𝐴)
2118, 16pw2divscld 28331 . . 3 (𝜑 → (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))) ∈ No )
2211, 21, 2pw2divsmuld 28332 . 2 (𝜑 → ((𝐴 /su (2ss𝑁)) = (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))) ↔ ((2ss𝑁) ·s (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀)))) = 𝐴))
2320, 22mpbird 257 1 (𝜑 → (𝐴 /su (2ss𝑁)) = (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349   No csur 27549   +s cadds 27871   ·s cmuls 28014   /su cdivs 28095  0scnn0s 28211  2sc2s 28302  scexps 28304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-muls 28015  df-divs 28096  df-seqs 28183  df-n0s 28213  df-nns 28214  df-zs 28272  df-2s 28303  df-exps 28305
This theorem is referenced by:  zs12addscl  28354  zs12half  28357
  Copyright terms: Public domain W3C validator