MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadds Structured version   Visualization version   GIF version

Theorem expadds 28372
Description: Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
expadds ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))

Proof of Theorem expadds
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . . 7 (𝑗 = 0s → (𝑀 +s 𝑗) = (𝑀 +s 0s ))
21oveq2d 7421 . . . . . 6 (𝑗 = 0s → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 0s )))
3 oveq2 7413 . . . . . . 7 (𝑗 = 0s → (𝐴s𝑗) = (𝐴s 0s ))
43oveq2d 7421 . . . . . 6 (𝑗 = 0s → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s 0s )))
52, 4eqeq12d 2751 . . . . 5 (𝑗 = 0s → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s ))))
65imbi2d 340 . . . 4 (𝑗 = 0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))))
7 oveq2 7413 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 +s 𝑗) = (𝑀 +s 𝑘))
87oveq2d 7421 . . . . . 6 (𝑗 = 𝑘 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑘)))
9 oveq2 7413 . . . . . . 7 (𝑗 = 𝑘 → (𝐴s𝑗) = (𝐴s𝑘))
109oveq2d 7421 . . . . . 6 (𝑗 = 𝑘 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
118, 10eqeq12d 2751 . . . . 5 (𝑗 = 𝑘 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))))
13 oveq2 7413 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝑀 +s 𝑗) = (𝑀 +s (𝑘 +s 1s )))
1413oveq2d 7421 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
15 oveq2 7413 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝐴s𝑗) = (𝐴s(𝑘 +s 1s )))
1615oveq2d 7421 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
1714, 16eqeq12d 2751 . . . . 5 (𝑗 = (𝑘 +s 1s ) → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s )))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 +s 1s ) → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
19 oveq2 7413 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 +s 𝑗) = (𝑀 +s 𝑁))
2019oveq2d 7421 . . . . . 6 (𝑗 = 𝑁 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑁)))
21 oveq2 7413 . . . . . . 7 (𝑗 = 𝑁 → (𝐴s𝑗) = (𝐴s𝑁))
2221oveq2d 7421 . . . . . 6 (𝑗 = 𝑁 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
2320, 22eqeq12d 2751 . . . . 5 (𝑗 = 𝑁 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))))
25 expscl 28369 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s𝑀) ∈ No )
2625mulsridd 28069 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s 1s ) = (𝐴s𝑀))
27 exps0 28365 . . . . . . 7 (𝐴 No → (𝐴s 0s ) = 1s )
2827oveq2d 7421 . . . . . 6 (𝐴 No → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
2928adantr 480 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
30 n0sno 28268 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
3130adantl 481 . . . . . . 7 ((𝐴 No 𝑀 ∈ ℕ0s) → 𝑀 No )
3231addsridd 27924 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑀 +s 0s ) = 𝑀)
3332oveq2d 7421 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = (𝐴s𝑀))
3426, 29, 333eqtr4rd 2781 . . . 4 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))
35 simprr 772 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
3635oveq1d 7420 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴))
3725adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → (𝐴s𝑀) ∈ No )
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑀) ∈ No )
39 simprll 778 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝐴 No )
40 simpl 482 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 ∈ ℕ0s)
41 expscl 28369 . . . . . . . . . 10 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s𝑘) ∈ No )
4239, 40, 41syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑘) ∈ No )
4338, 42, 39mulsassd 28122 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
4436, 43eqtrd 2770 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
45 simprlr 779 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 ∈ ℕ0s)
4645n0snod 28270 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 No )
4740n0snod 28270 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 No )
48 1sno 27791 . . . . . . . . . . 11 1s No
4948a1i 11 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 1s No )
5046, 47, 49addsassd 27965 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝑀 +s 𝑘) +s 1s ) = (𝑀 +s (𝑘 +s 1s )))
5150oveq2d 7421 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
52 n0addscl 28288 . . . . . . . . . 10 ((𝑀 ∈ ℕ0s𝑘 ∈ ℕ0s) → (𝑀 +s 𝑘) ∈ ℕ0s)
5345, 40, 52syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝑀 +s 𝑘) ∈ ℕ0s)
54 expsp1 28367 . . . . . . . . 9 ((𝐴 No ∧ (𝑀 +s 𝑘) ∈ ℕ0s) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5539, 53, 54syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5651, 55eqtr3d 2772 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
57 expsp1 28367 . . . . . . . . 9 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5839, 40, 57syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5958oveq2d 7421 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
6044, 56, 593eqtr4d 2780 . . . . . 6 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
6160exp32 420 . . . . 5 (𝑘 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
6261a2d 29 . . . 4 (𝑘 ∈ ℕ0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
636, 12, 18, 24, 34, 62n0sind 28277 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
6463com12 32 . 2 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑁 ∈ ℕ0s → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
65643impia 1117 1 ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  (class class class)co 7405   No csur 27603   0s c0s 27786   1s c1s 27787   +s cadds 27918   ·s cmuls 28061  0scnn0s 28258  scexps 28350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-seqs 28230  df-n0s 28260  df-nns 28261  df-zs 28319  df-exps 28351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator