MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadds Structured version   Visualization version   GIF version

Theorem expadds 28327
Description: Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
expadds ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))

Proof of Theorem expadds
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . 7 (𝑗 = 0s → (𝑀 +s 𝑗) = (𝑀 +s 0s ))
21oveq2d 7406 . . . . . 6 (𝑗 = 0s → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 0s )))
3 oveq2 7398 . . . . . . 7 (𝑗 = 0s → (𝐴s𝑗) = (𝐴s 0s ))
43oveq2d 7406 . . . . . 6 (𝑗 = 0s → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s 0s )))
52, 4eqeq12d 2746 . . . . 5 (𝑗 = 0s → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s ))))
65imbi2d 340 . . . 4 (𝑗 = 0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))))
7 oveq2 7398 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 +s 𝑗) = (𝑀 +s 𝑘))
87oveq2d 7406 . . . . . 6 (𝑗 = 𝑘 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑘)))
9 oveq2 7398 . . . . . . 7 (𝑗 = 𝑘 → (𝐴s𝑗) = (𝐴s𝑘))
109oveq2d 7406 . . . . . 6 (𝑗 = 𝑘 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
118, 10eqeq12d 2746 . . . . 5 (𝑗 = 𝑘 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))))
13 oveq2 7398 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝑀 +s 𝑗) = (𝑀 +s (𝑘 +s 1s )))
1413oveq2d 7406 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
15 oveq2 7398 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝐴s𝑗) = (𝐴s(𝑘 +s 1s )))
1615oveq2d 7406 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
1714, 16eqeq12d 2746 . . . . 5 (𝑗 = (𝑘 +s 1s ) → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s )))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 +s 1s ) → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
19 oveq2 7398 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 +s 𝑗) = (𝑀 +s 𝑁))
2019oveq2d 7406 . . . . . 6 (𝑗 = 𝑁 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑁)))
21 oveq2 7398 . . . . . . 7 (𝑗 = 𝑁 → (𝐴s𝑗) = (𝐴s𝑁))
2221oveq2d 7406 . . . . . 6 (𝑗 = 𝑁 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
2320, 22eqeq12d 2746 . . . . 5 (𝑗 = 𝑁 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))))
25 expscl 28324 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s𝑀) ∈ No )
2625mulsridd 28024 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s 1s ) = (𝐴s𝑀))
27 exps0 28320 . . . . . . 7 (𝐴 No → (𝐴s 0s ) = 1s )
2827oveq2d 7406 . . . . . 6 (𝐴 No → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
2928adantr 480 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
30 n0sno 28223 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
3130adantl 481 . . . . . . 7 ((𝐴 No 𝑀 ∈ ℕ0s) → 𝑀 No )
3231addsridd 27879 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑀 +s 0s ) = 𝑀)
3332oveq2d 7406 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = (𝐴s𝑀))
3426, 29, 333eqtr4rd 2776 . . . 4 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))
35 simprr 772 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
3635oveq1d 7405 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴))
3725adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → (𝐴s𝑀) ∈ No )
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑀) ∈ No )
39 simprll 778 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝐴 No )
40 simpl 482 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 ∈ ℕ0s)
41 expscl 28324 . . . . . . . . . 10 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s𝑘) ∈ No )
4239, 40, 41syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑘) ∈ No )
4338, 42, 39mulsassd 28077 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
4436, 43eqtrd 2765 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
45 simprlr 779 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 ∈ ℕ0s)
4645n0snod 28225 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 No )
4740n0snod 28225 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 No )
48 1sno 27746 . . . . . . . . . . 11 1s No
4948a1i 11 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 1s No )
5046, 47, 49addsassd 27920 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝑀 +s 𝑘) +s 1s ) = (𝑀 +s (𝑘 +s 1s )))
5150oveq2d 7406 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
52 n0addscl 28243 . . . . . . . . . 10 ((𝑀 ∈ ℕ0s𝑘 ∈ ℕ0s) → (𝑀 +s 𝑘) ∈ ℕ0s)
5345, 40, 52syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝑀 +s 𝑘) ∈ ℕ0s)
54 expsp1 28322 . . . . . . . . 9 ((𝐴 No ∧ (𝑀 +s 𝑘) ∈ ℕ0s) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5539, 53, 54syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5651, 55eqtr3d 2767 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
57 expsp1 28322 . . . . . . . . 9 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5839, 40, 57syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5958oveq2d 7406 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
6044, 56, 593eqtr4d 2775 . . . . . 6 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
6160exp32 420 . . . . 5 (𝑘 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
6261a2d 29 . . . 4 (𝑘 ∈ ℕ0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
636, 12, 18, 24, 34, 62n0sind 28232 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
6463com12 32 . 2 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑁 ∈ ℕ0s → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
65643impia 1117 1 ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7390   No csur 27558   0s c0s 27741   1s c1s 27742   +s cadds 27873   ·s cmuls 28016  0scnn0s 28213  scexps 28305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-exps 28306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator