MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadds Structured version   Visualization version   GIF version

Theorem expadds 28358
Description: Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
expadds ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))

Proof of Theorem expadds
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . 7 (𝑗 = 0s → (𝑀 +s 𝑗) = (𝑀 +s 0s ))
21oveq2d 7362 . . . . . 6 (𝑗 = 0s → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 0s )))
3 oveq2 7354 . . . . . . 7 (𝑗 = 0s → (𝐴s𝑗) = (𝐴s 0s ))
43oveq2d 7362 . . . . . 6 (𝑗 = 0s → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s 0s )))
52, 4eqeq12d 2747 . . . . 5 (𝑗 = 0s → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s ))))
65imbi2d 340 . . . 4 (𝑗 = 0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))))
7 oveq2 7354 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 +s 𝑗) = (𝑀 +s 𝑘))
87oveq2d 7362 . . . . . 6 (𝑗 = 𝑘 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑘)))
9 oveq2 7354 . . . . . . 7 (𝑗 = 𝑘 → (𝐴s𝑗) = (𝐴s𝑘))
109oveq2d 7362 . . . . . 6 (𝑗 = 𝑘 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
118, 10eqeq12d 2747 . . . . 5 (𝑗 = 𝑘 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))))
13 oveq2 7354 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝑀 +s 𝑗) = (𝑀 +s (𝑘 +s 1s )))
1413oveq2d 7362 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
15 oveq2 7354 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝐴s𝑗) = (𝐴s(𝑘 +s 1s )))
1615oveq2d 7362 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
1714, 16eqeq12d 2747 . . . . 5 (𝑗 = (𝑘 +s 1s ) → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s )))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 +s 1s ) → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
19 oveq2 7354 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 +s 𝑗) = (𝑀 +s 𝑁))
2019oveq2d 7362 . . . . . 6 (𝑗 = 𝑁 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑁)))
21 oveq2 7354 . . . . . . 7 (𝑗 = 𝑁 → (𝐴s𝑗) = (𝐴s𝑁))
2221oveq2d 7362 . . . . . 6 (𝑗 = 𝑁 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
2320, 22eqeq12d 2747 . . . . 5 (𝑗 = 𝑁 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))))
25 expscl 28354 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s𝑀) ∈ No )
2625mulsridd 28053 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s 1s ) = (𝐴s𝑀))
27 exps0 28350 . . . . . . 7 (𝐴 No → (𝐴s 0s ) = 1s )
2827oveq2d 7362 . . . . . 6 (𝐴 No → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
2928adantr 480 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
30 n0sno 28252 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
3130adantl 481 . . . . . . 7 ((𝐴 No 𝑀 ∈ ℕ0s) → 𝑀 No )
3231addsridd 27908 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑀 +s 0s ) = 𝑀)
3332oveq2d 7362 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = (𝐴s𝑀))
3426, 29, 333eqtr4rd 2777 . . . 4 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))
35 simprr 772 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
3635oveq1d 7361 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴))
3725adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → (𝐴s𝑀) ∈ No )
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑀) ∈ No )
39 simprll 778 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝐴 No )
40 simpl 482 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 ∈ ℕ0s)
41 expscl 28354 . . . . . . . . . 10 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s𝑘) ∈ No )
4239, 40, 41syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑘) ∈ No )
4338, 42, 39mulsassd 28106 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
4436, 43eqtrd 2766 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
45 simprlr 779 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 ∈ ℕ0s)
4645n0snod 28254 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 No )
4740n0snod 28254 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 No )
48 1sno 27771 . . . . . . . . . . 11 1s No
4948a1i 11 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 1s No )
5046, 47, 49addsassd 27949 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝑀 +s 𝑘) +s 1s ) = (𝑀 +s (𝑘 +s 1s )))
5150oveq2d 7362 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
52 n0addscl 28272 . . . . . . . . . 10 ((𝑀 ∈ ℕ0s𝑘 ∈ ℕ0s) → (𝑀 +s 𝑘) ∈ ℕ0s)
5345, 40, 52syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝑀 +s 𝑘) ∈ ℕ0s)
54 expsp1 28352 . . . . . . . . 9 ((𝐴 No ∧ (𝑀 +s 𝑘) ∈ ℕ0s) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5539, 53, 54syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5651, 55eqtr3d 2768 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
57 expsp1 28352 . . . . . . . . 9 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5839, 40, 57syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5958oveq2d 7362 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
6044, 56, 593eqtr4d 2776 . . . . . 6 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
6160exp32 420 . . . . 5 (𝑘 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
6261a2d 29 . . . 4 (𝑘 ∈ ℕ0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
636, 12, 18, 24, 34, 62n0sind 28261 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
6463com12 32 . 2 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑁 ∈ ℕ0s → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
65643impia 1117 1 ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346   No csur 27578   0s c0s 27766   1s c1s 27767   +s cadds 27902   ·s cmuls 28045  0scnn0s 28242  scexps 28335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-seqs 28214  df-n0s 28244  df-nns 28245  df-zs 28303  df-exps 28336
This theorem is referenced by:  pw2divscan4d  28367
  Copyright terms: Public domain W3C validator