MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadds Structured version   Visualization version   GIF version

Theorem expadds 28363
Description: Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
expadds ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))

Proof of Theorem expadds
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . . . 7 (𝑗 = 0s → (𝑀 +s 𝑗) = (𝑀 +s 0s ))
21oveq2d 7385 . . . . . 6 (𝑗 = 0s → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 0s )))
3 oveq2 7377 . . . . . . 7 (𝑗 = 0s → (𝐴s𝑗) = (𝐴s 0s ))
43oveq2d 7385 . . . . . 6 (𝑗 = 0s → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s 0s )))
52, 4eqeq12d 2745 . . . . 5 (𝑗 = 0s → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s ))))
65imbi2d 340 . . . 4 (𝑗 = 0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))))
7 oveq2 7377 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 +s 𝑗) = (𝑀 +s 𝑘))
87oveq2d 7385 . . . . . 6 (𝑗 = 𝑘 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑘)))
9 oveq2 7377 . . . . . . 7 (𝑗 = 𝑘 → (𝐴s𝑗) = (𝐴s𝑘))
109oveq2d 7385 . . . . . 6 (𝑗 = 𝑘 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
118, 10eqeq12d 2745 . . . . 5 (𝑗 = 𝑘 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))))
13 oveq2 7377 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝑀 +s 𝑗) = (𝑀 +s (𝑘 +s 1s )))
1413oveq2d 7385 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
15 oveq2 7377 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝐴s𝑗) = (𝐴s(𝑘 +s 1s )))
1615oveq2d 7385 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
1714, 16eqeq12d 2745 . . . . 5 (𝑗 = (𝑘 +s 1s ) → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s )))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 +s 1s ) → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
19 oveq2 7377 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 +s 𝑗) = (𝑀 +s 𝑁))
2019oveq2d 7385 . . . . . 6 (𝑗 = 𝑁 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑁)))
21 oveq2 7377 . . . . . . 7 (𝑗 = 𝑁 → (𝐴s𝑗) = (𝐴s𝑁))
2221oveq2d 7385 . . . . . 6 (𝑗 = 𝑁 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
2320, 22eqeq12d 2745 . . . . 5 (𝑗 = 𝑁 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))))
25 expscl 28359 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s𝑀) ∈ No )
2625mulsridd 28058 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s 1s ) = (𝐴s𝑀))
27 exps0 28355 . . . . . . 7 (𝐴 No → (𝐴s 0s ) = 1s )
2827oveq2d 7385 . . . . . 6 (𝐴 No → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
2928adantr 480 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
30 n0sno 28257 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
3130adantl 481 . . . . . . 7 ((𝐴 No 𝑀 ∈ ℕ0s) → 𝑀 No )
3231addsridd 27913 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑀 +s 0s ) = 𝑀)
3332oveq2d 7385 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = (𝐴s𝑀))
3426, 29, 333eqtr4rd 2775 . . . 4 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))
35 simprr 772 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
3635oveq1d 7384 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴))
3725adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → (𝐴s𝑀) ∈ No )
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑀) ∈ No )
39 simprll 778 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝐴 No )
40 simpl 482 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 ∈ ℕ0s)
41 expscl 28359 . . . . . . . . . 10 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s𝑘) ∈ No )
4239, 40, 41syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑘) ∈ No )
4338, 42, 39mulsassd 28111 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
4436, 43eqtrd 2764 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
45 simprlr 779 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 ∈ ℕ0s)
4645n0snod 28259 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 No )
4740n0snod 28259 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 No )
48 1sno 27777 . . . . . . . . . . 11 1s No
4948a1i 11 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 1s No )
5046, 47, 49addsassd 27954 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝑀 +s 𝑘) +s 1s ) = (𝑀 +s (𝑘 +s 1s )))
5150oveq2d 7385 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
52 n0addscl 28277 . . . . . . . . . 10 ((𝑀 ∈ ℕ0s𝑘 ∈ ℕ0s) → (𝑀 +s 𝑘) ∈ ℕ0s)
5345, 40, 52syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝑀 +s 𝑘) ∈ ℕ0s)
54 expsp1 28357 . . . . . . . . 9 ((𝐴 No ∧ (𝑀 +s 𝑘) ∈ ℕ0s) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5539, 53, 54syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5651, 55eqtr3d 2766 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
57 expsp1 28357 . . . . . . . . 9 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5839, 40, 57syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5958oveq2d 7385 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
6044, 56, 593eqtr4d 2774 . . . . . 6 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
6160exp32 420 . . . . 5 (𝑘 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
6261a2d 29 . . . 4 (𝑘 ∈ ℕ0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
636, 12, 18, 24, 34, 62n0sind 28266 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
6463com12 32 . 2 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑁 ∈ ℕ0s → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
65643impia 1117 1 ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7369   No csur 27585   0s c0s 27772   1s c1s 27773   +s cadds 27907   ·s cmuls 28050  0scnn0s 28247  scexps 28340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27588  df-slt 27589  df-bday 27590  df-sle 27691  df-sslt 27728  df-scut 27730  df-0s 27774  df-1s 27775  df-made 27793  df-old 27794  df-left 27796  df-right 27797  df-norec 27886  df-norec2 27897  df-adds 27908  df-negs 27968  df-subs 27969  df-muls 28051  df-seqs 28219  df-n0s 28249  df-nns 28250  df-zs 28308  df-exps 28341
This theorem is referenced by:  pw2divscan4d  28372
  Copyright terms: Public domain W3C validator