MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadds Structured version   Visualization version   GIF version

Theorem expadds 28329
Description: Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
expadds ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))

Proof of Theorem expadds
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . . . 7 (𝑗 = 0s → (𝑀 +s 𝑗) = (𝑀 +s 0s ))
21oveq2d 7365 . . . . . 6 (𝑗 = 0s → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 0s )))
3 oveq2 7357 . . . . . . 7 (𝑗 = 0s → (𝐴s𝑗) = (𝐴s 0s ))
43oveq2d 7365 . . . . . 6 (𝑗 = 0s → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s 0s )))
52, 4eqeq12d 2745 . . . . 5 (𝑗 = 0s → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s ))))
65imbi2d 340 . . . 4 (𝑗 = 0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))))
7 oveq2 7357 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 +s 𝑗) = (𝑀 +s 𝑘))
87oveq2d 7365 . . . . . 6 (𝑗 = 𝑘 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑘)))
9 oveq2 7357 . . . . . . 7 (𝑗 = 𝑘 → (𝐴s𝑗) = (𝐴s𝑘))
109oveq2d 7365 . . . . . 6 (𝑗 = 𝑘 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
118, 10eqeq12d 2745 . . . . 5 (𝑗 = 𝑘 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))))
13 oveq2 7357 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝑀 +s 𝑗) = (𝑀 +s (𝑘 +s 1s )))
1413oveq2d 7365 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
15 oveq2 7357 . . . . . . 7 (𝑗 = (𝑘 +s 1s ) → (𝐴s𝑗) = (𝐴s(𝑘 +s 1s )))
1615oveq2d 7365 . . . . . 6 (𝑗 = (𝑘 +s 1s ) → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
1714, 16eqeq12d 2745 . . . . 5 (𝑗 = (𝑘 +s 1s ) → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s )))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 +s 1s ) → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
19 oveq2 7357 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 +s 𝑗) = (𝑀 +s 𝑁))
2019oveq2d 7365 . . . . . 6 (𝑗 = 𝑁 → (𝐴s(𝑀 +s 𝑗)) = (𝐴s(𝑀 +s 𝑁)))
21 oveq2 7357 . . . . . . 7 (𝑗 = 𝑁 → (𝐴s𝑗) = (𝐴s𝑁))
2221oveq2d 7365 . . . . . 6 (𝑗 = 𝑁 → ((𝐴s𝑀) ·s (𝐴s𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
2320, 22eqeq12d 2745 . . . . 5 (𝑗 = 𝑁 → ((𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗)) ↔ (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑗)) = ((𝐴s𝑀) ·s (𝐴s𝑗))) ↔ ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))))
25 expscl 28325 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s𝑀) ∈ No )
2625mulsridd 28024 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s 1s ) = (𝐴s𝑀))
27 exps0 28321 . . . . . . 7 (𝐴 No → (𝐴s 0s ) = 1s )
2827oveq2d 7365 . . . . . 6 (𝐴 No → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
2928adantr 480 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s𝑀) ·s (𝐴s 0s )) = ((𝐴s𝑀) ·s 1s ))
30 n0sno 28223 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
3130adantl 481 . . . . . . 7 ((𝐴 No 𝑀 ∈ ℕ0s) → 𝑀 No )
3231addsridd 27879 . . . . . 6 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑀 +s 0s ) = 𝑀)
3332oveq2d 7365 . . . . 5 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = (𝐴s𝑀))
3426, 29, 333eqtr4rd 2775 . . . 4 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 0s )) = ((𝐴s𝑀) ·s (𝐴s 0s )))
35 simprr 772 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))
3635oveq1d 7364 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴))
3725adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → (𝐴s𝑀) ∈ No )
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑀) ∈ No )
39 simprll 778 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝐴 No )
40 simpl 482 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 ∈ ℕ0s)
41 expscl 28325 . . . . . . . . . 10 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s𝑘) ∈ No )
4239, 40, 41syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s𝑘) ∈ No )
4338, 42, 39mulsassd 28077 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (((𝐴s𝑀) ·s (𝐴s𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
4436, 43eqtrd 2764 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
45 simprlr 779 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 ∈ ℕ0s)
4645n0snod 28225 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑀 No )
4740n0snod 28225 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 𝑘 No )
48 1sno 27742 . . . . . . . . . . 11 1s No
4948a1i 11 . . . . . . . . . 10 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → 1s No )
5046, 47, 49addsassd 27920 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝑀 +s 𝑘) +s 1s ) = (𝑀 +s (𝑘 +s 1s )))
5150oveq2d 7365 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = (𝐴s(𝑀 +s (𝑘 +s 1s ))))
52 n0addscl 28243 . . . . . . . . . 10 ((𝑀 ∈ ℕ0s𝑘 ∈ ℕ0s) → (𝑀 +s 𝑘) ∈ ℕ0s)
5345, 40, 52syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝑀 +s 𝑘) ∈ ℕ0s)
54 expsp1 28323 . . . . . . . . 9 ((𝐴 No ∧ (𝑀 +s 𝑘) ∈ ℕ0s) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5539, 53, 54syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s((𝑀 +s 𝑘) +s 1s )) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
5651, 55eqtr3d 2766 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s(𝑀 +s 𝑘)) ·s 𝐴))
57 expsp1 28323 . . . . . . . . 9 ((𝐴 No 𝑘 ∈ ℕ0s) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5839, 40, 57syl2anc 584 . . . . . . . 8 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑘 +s 1s )) = ((𝐴s𝑘) ·s 𝐴))
5958oveq2d 7365 . . . . . . 7 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))) = ((𝐴s𝑀) ·s ((𝐴s𝑘) ·s 𝐴)))
6044, 56, 593eqtr4d 2774 . . . . . 6 ((𝑘 ∈ ℕ0s ∧ ((𝐴 No 𝑀 ∈ ℕ0s) ∧ (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)))) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))
6160exp32 420 . . . . 5 (𝑘 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → ((𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘)) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
6261a2d 29 . . . 4 (𝑘 ∈ ℕ0s → (((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑘)) = ((𝐴s𝑀) ·s (𝐴s𝑘))) → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴s𝑀) ·s (𝐴s(𝑘 +s 1s ))))))
636, 12, 18, 24, 34, 62n0sind 28232 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No 𝑀 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
6463com12 32 . 2 ((𝐴 No 𝑀 ∈ ℕ0s) → (𝑁 ∈ ℕ0s → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁))))
65643impia 1117 1 ((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7349   No csur 27549   0s c0s 27737   1s c1s 27738   +s cadds 27873   ·s cmuls 28016  0scnn0s 28213  scexps 28306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-exps 28307
This theorem is referenced by:  pw2divscan4d  28338
  Copyright terms: Public domain W3C validator