| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 0s → (𝑀 +s 𝑗) = (𝑀 +s 0s
)) |
| 2 | 1 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = 0s → (𝐴↑s(𝑀 +s 𝑗)) = (𝐴↑s(𝑀 +s 0s
))) |
| 3 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 0s → (𝐴↑s𝑗) = (𝐴↑s 0s
)) |
| 4 | 3 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = 0s → ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s 0s
))) |
| 5 | 2, 4 | eqeq12d 2751 |
. . . . 5
⊢ (𝑗 = 0s → ((𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) ↔ (𝐴↑s(𝑀 +s 0s )) = ((𝐴↑s𝑀) ·s (𝐴↑s 0s
)))) |
| 6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑗 = 0s → (((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗))) ↔ ((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 0s )) = ((𝐴↑s𝑀) ·s (𝐴↑s 0s
))))) |
| 7 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑀 +s 𝑗) = (𝑀 +s 𝑘)) |
| 8 | 7 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑s(𝑀 +s 𝑗)) = (𝐴↑s(𝑀 +s 𝑘))) |
| 9 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐴↑s𝑗) = (𝐴↑s𝑘)) |
| 10 | 9 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘))) |
| 11 | 8, 10 | eqeq12d 2751 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) ↔ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗))) ↔ ((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘))))) |
| 13 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = (𝑘 +s 1s ) → (𝑀 +s 𝑗) = (𝑀 +s (𝑘 +s 1s
))) |
| 14 | 13 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = (𝑘 +s 1s ) → (𝐴↑s(𝑀 +s 𝑗)) = (𝐴↑s(𝑀 +s (𝑘 +s 1s
)))) |
| 15 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = (𝑘 +s 1s ) → (𝐴↑s𝑗) = (𝐴↑s(𝑘 +s 1s
))) |
| 16 | 15 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = (𝑘 +s 1s ) → ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s
)))) |
| 17 | 14, 16 | eqeq12d 2751 |
. . . . 5
⊢ (𝑗 = (𝑘 +s 1s ) → ((𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) ↔ (𝐴↑s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s
))))) |
| 18 | 17 | imbi2d 340 |
. . . 4
⊢ (𝑗 = (𝑘 +s 1s ) →
(((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) → (𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗))) ↔ ((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s
)))))) |
| 19 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝑀 +s 𝑗) = (𝑀 +s 𝑁)) |
| 20 | 19 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑s(𝑀 +s 𝑗)) = (𝐴↑s(𝑀 +s 𝑁))) |
| 21 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝐴↑s𝑗) = (𝐴↑s𝑁)) |
| 22 | 21 | oveq2d 7421 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁))) |
| 23 | 20, 22 | eqeq12d 2751 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗)) ↔ (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁)))) |
| 24 | 23 | imbi2d 340 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 𝑗)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑗))) ↔ ((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁))))) |
| 25 | | expscl 28369 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → (𝐴↑s𝑀) ∈ No
) |
| 26 | 25 | mulsridd 28069 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → ((𝐴↑s𝑀) ·s 1s ) =
(𝐴↑s𝑀)) |
| 27 | | exps0 28365 |
. . . . . . 7
⊢ (𝐴 ∈
No → (𝐴↑s 0s ) =
1s ) |
| 28 | 27 | oveq2d 7421 |
. . . . . 6
⊢ (𝐴 ∈
No → ((𝐴↑s𝑀) ·s (𝐴↑s 0s )) =
((𝐴↑s𝑀) ·s
1s )) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → ((𝐴↑s𝑀) ·s (𝐴↑s 0s )) =
((𝐴↑s𝑀) ·s
1s )) |
| 30 | | n0sno 28268 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0s
→ 𝑀 ∈ No ) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → 𝑀 ∈ No
) |
| 32 | 31 | addsridd 27924 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → (𝑀 +s 0s ) = 𝑀) |
| 33 | 32 | oveq2d 7421 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 0s )) = (𝐴↑s𝑀)) |
| 34 | 26, 29, 33 | 3eqtr4rd 2781 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s 0s )) = ((𝐴↑s𝑀) ·s (𝐴↑s 0s
))) |
| 35 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘))) |
| 36 | 35 | oveq1d 7420 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → ((𝐴↑s(𝑀 +s 𝑘)) ·s 𝐴) = (((𝐴↑s𝑀) ·s (𝐴↑s𝑘)) ·s 𝐴)) |
| 37 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘))) → (𝐴↑s𝑀) ∈ No
) |
| 38 | 37 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s𝑀) ∈ No
) |
| 39 | | simprll 778 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → 𝐴 ∈ No
) |
| 40 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → 𝑘 ∈
ℕ0s) |
| 41 | | expscl 28369 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝑘 ∈
ℕ0s) → (𝐴↑s𝑘) ∈ No
) |
| 42 | 39, 40, 41 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s𝑘) ∈ No
) |
| 43 | 38, 42, 39 | mulsassd 28122 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (((𝐴↑s𝑀) ·s (𝐴↑s𝑘)) ·s 𝐴) = ((𝐴↑s𝑀) ·s ((𝐴↑s𝑘) ·s 𝐴))) |
| 44 | 36, 43 | eqtrd 2770 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → ((𝐴↑s(𝑀 +s 𝑘)) ·s 𝐴) = ((𝐴↑s𝑀) ·s ((𝐴↑s𝑘) ·s 𝐴))) |
| 45 | | simprlr 779 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → 𝑀 ∈
ℕ0s) |
| 46 | 45 | n0snod 28270 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → 𝑀 ∈ No
) |
| 47 | 40 | n0snod 28270 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → 𝑘 ∈ No
) |
| 48 | | 1sno 27791 |
. . . . . . . . . . 11
⊢
1s ∈ No |
| 49 | 48 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → 1s ∈ No ) |
| 50 | 46, 47, 49 | addsassd 27965 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → ((𝑀 +s 𝑘) +s 1s ) = (𝑀 +s (𝑘 +s 1s
))) |
| 51 | 50 | oveq2d 7421 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s((𝑀 +s 𝑘) +s 1s )) = (𝐴↑s(𝑀 +s (𝑘 +s 1s
)))) |
| 52 | | n0addscl 28288 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑘 ∈
ℕ0s) → (𝑀 +s 𝑘) ∈
ℕ0s) |
| 53 | 45, 40, 52 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝑀 +s 𝑘) ∈
ℕ0s) |
| 54 | | expsp1 28367 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ (𝑀
+s 𝑘) ∈
ℕ0s) → (𝐴↑s((𝑀 +s 𝑘) +s 1s )) = ((𝐴↑s(𝑀 +s 𝑘)) ·s 𝐴)) |
| 55 | 39, 53, 54 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s((𝑀 +s 𝑘) +s 1s )) = ((𝐴↑s(𝑀 +s 𝑘)) ·s 𝐴)) |
| 56 | 51, 55 | eqtr3d 2772 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴↑s(𝑀 +s 𝑘)) ·s 𝐴)) |
| 57 | | expsp1 28367 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝑘 ∈
ℕ0s) → (𝐴↑s(𝑘 +s 1s )) = ((𝐴↑s𝑘) ·s 𝐴)) |
| 58 | 39, 40, 57 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s(𝑘 +s 1s )) = ((𝐴↑s𝑘) ·s 𝐴)) |
| 59 | 58 | oveq2d 7421 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s ))) = ((𝐴↑s𝑀) ·s ((𝐴↑s𝑘) ·s 𝐴))) |
| 60 | 44, 56, 59 | 3eqtr4d 2780 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0s
∧ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) ∧ (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)))) → (𝐴↑s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s
)))) |
| 61 | 60 | exp32 420 |
. . . . 5
⊢ (𝑘 ∈ ℕ0s
→ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) → ((𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘)) → (𝐴↑s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s
)))))) |
| 62 | 61 | a2d 29 |
. . . 4
⊢ (𝑘 ∈ ℕ0s
→ (((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) → (𝐴↑s(𝑀 +s 𝑘)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑘))) → ((𝐴 ∈ No
∧ 𝑀 ∈
ℕ0s) → (𝐴↑s(𝑀 +s (𝑘 +s 1s ))) = ((𝐴↑s𝑀) ·s (𝐴↑s(𝑘 +s 1s
)))))) |
| 63 | 6, 12, 18, 24, 34, 62 | n0sind 28277 |
. . 3
⊢ (𝑁 ∈ ℕ0s
→ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s) → (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁)))) |
| 64 | 63 | com12 32 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s) → (𝑁 ∈ ℕ0s → (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁)))) |
| 65 | 64 | 3impia 1117 |
1
⊢ ((𝐴 ∈
No ∧ 𝑀 ∈
ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁))) |