| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absdvdsb | Structured version Visualization version GIF version | ||
| Description: An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| absdvdsb | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . . 4 ⊢ ((abs‘𝑀) = 𝑀 → ((abs‘𝑀) ∥ 𝑁 ↔ 𝑀 ∥ 𝑁)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ ((abs‘𝑀) = 𝑀 → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = 𝑀 → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁))) |
| 4 | negdvdsb 16183 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | |
| 5 | breq1 5095 | . . . . 5 ⊢ ((abs‘𝑀) = -𝑀 → ((abs‘𝑀) ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | |
| 6 | 5 | bicomd 223 | . . . 4 ⊢ ((abs‘𝑀) = -𝑀 → (-𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) |
| 7 | 4, 6 | sylan9bb 509 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = -𝑀) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) |
| 8 | 7 | ex 412 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = -𝑀 → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁))) |
| 9 | zre 12475 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 10 | 9 | absord 15323 | . . 3 ⊢ (𝑀 ∈ ℤ → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀)) |
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀)) |
| 12 | 3, 8, 11 | mpjaod 860 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 -cneg 11348 ℤcz 12471 abscabs 15141 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 |
| This theorem is referenced by: dvdsleabs2 16223 divalglem9 16312 gcd0id 16430 dvdssq 16478 lcmdvds 16519 lcmgcdeq 16523 pc2dvds 16791 prmirredlem 21379 absdvdsabsb 42301 dvdsabsmod0 42960 nznngen 44289 |
| Copyright terms: Public domain | W3C validator |