Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0sumltlt | Structured version Visualization version GIF version |
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.) |
Ref | Expression |
---|---|
nn0sumltlt | ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12172 | . . 3 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ) | |
2 | nn0re 12172 | . . 3 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
3 | nn0re 12172 | . . 3 ⊢ (𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ) | |
4 | ltaddsub2 11380 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) | |
5 | 1, 2, 3, 4 | syl3an 1158 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) |
6 | nn0ge0 12188 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 0 ≤ 𝑎) | |
7 | 6 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 0 ≤ 𝑎) |
8 | 1, 3 | anim12ci 613 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
9 | 8 | 3adant2 1129 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
10 | subge02 11421 | . . . . . 6 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐 − 𝑎) ≤ 𝑐)) | |
11 | 10 | bicomd 222 | . . . . 5 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
13 | 7, 12 | mpbird 256 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ≤ 𝑐) |
14 | 2 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ) |
15 | nn0resubcl 44688 | . . . . . 6 ⊢ ((𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) | |
16 | 15 | ancoms 458 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
17 | 16 | 3adant2 1129 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
18 | 3 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ) |
19 | ltletr 10997 | . . . 4 ⊢ ((𝑏 ∈ ℝ ∧ (𝑐 − 𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) | |
20 | 14, 17, 18, 19 | syl3anc 1369 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) |
21 | 13, 20 | mpan2d 690 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑏 < (𝑐 − 𝑎) → 𝑏 < 𝑐)) |
22 | 5, 21 | sylbid 239 | 1 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 |
This theorem is referenced by: ply1mulgsumlem1 45615 |
Copyright terms: Public domain | W3C validator |