Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumltlt Structured version   Visualization version   GIF version

Theorem nn0sumltlt 48212
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.)
Assertion
Ref Expression
nn0sumltlt ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < 𝑐))

Proof of Theorem nn0sumltlt
StepHypRef Expression
1 nn0re 12519 . . 3 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2 nn0re 12519 . . 3 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
3 nn0re 12519 . . 3 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
4 ltaddsub2 11721 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐𝑏 < (𝑐𝑎)))
51, 2, 3, 4syl3an 1160 . 2 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < (𝑐𝑎)))
6 nn0ge0 12535 . . . . 5 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
763ad2ant1 1133 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 0 ≤ 𝑎)
81, 3anim12ci 614 . . . . . 6 ((𝑎 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ))
983adant2 1131 . . . . 5 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ))
10 subge02 11762 . . . . . 6 ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐𝑎) ≤ 𝑐))
1110bicomd 223 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎))
129, 11syl 17 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑐𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎))
137, 12mpbird 257 . . 3 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ≤ 𝑐)
1423ad2ant2 1134 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ)
15 nn0resubcl 47266 . . . . . 6 ((𝑐 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
1615ancoms 458 . . . . 5 ((𝑎 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
17163adant2 1131 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
1833ad2ant3 1135 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ)
19 ltletr 11336 . . . 4 ((𝑏 ∈ ℝ ∧ (𝑐𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐𝑎) ∧ (𝑐𝑎) ≤ 𝑐) → 𝑏 < 𝑐))
2014, 17, 18, 19syl3anc 1372 . . 3 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑏 < (𝑐𝑎) ∧ (𝑐𝑎) ≤ 𝑐) → 𝑏 < 𝑐))
2113, 20mpan2d 694 . 2 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑏 < (𝑐𝑎) → 𝑏 < 𝑐))
225, 21sylbid 240 1 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < 𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107   class class class wbr 5125  (class class class)co 7414  cr 11137  0cc0 11138   + caddc 11141   < clt 11278  cle 11279  cmin 11475  0cn0 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-n0 12511
This theorem is referenced by:  ply1mulgsumlem1  48249
  Copyright terms: Public domain W3C validator