| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0sumltlt | Structured version Visualization version GIF version | ||
| Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.) |
| Ref | Expression |
|---|---|
| nn0sumltlt | ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12519 | . . 3 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ) | |
| 2 | nn0re 12519 | . . 3 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
| 3 | nn0re 12519 | . . 3 ⊢ (𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ) | |
| 4 | ltaddsub2 11721 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) |
| 6 | nn0ge0 12535 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 0 ≤ 𝑎) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 0 ≤ 𝑎) |
| 8 | 1, 3 | anim12ci 614 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
| 9 | 8 | 3adant2 1131 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
| 10 | subge02 11762 | . . . . . 6 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐 − 𝑎) ≤ 𝑐)) | |
| 11 | 10 | bicomd 223 | . . . . 5 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
| 13 | 7, 12 | mpbird 257 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ≤ 𝑐) |
| 14 | 2 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ) |
| 15 | nn0resubcl 47266 | . . . . . 6 ⊢ ((𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) | |
| 16 | 15 | ancoms 458 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
| 17 | 16 | 3adant2 1131 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
| 18 | 3 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ) |
| 19 | ltletr 11336 | . . . 4 ⊢ ((𝑏 ∈ ℝ ∧ (𝑐 − 𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) | |
| 20 | 14, 17, 18, 19 | syl3anc 1372 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) |
| 21 | 13, 20 | mpan2d 694 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑏 < (𝑐 − 𝑎) → 𝑏 < 𝑐)) |
| 22 | 5, 21 | sylbid 240 | 1 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5125 (class class class)co 7414 ℝcr 11137 0cc0 11138 + caddc 11141 < clt 11278 ≤ cle 11279 − cmin 11475 ℕ0cn0 12510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 |
| This theorem is referenced by: ply1mulgsumlem1 48249 |
| Copyright terms: Public domain | W3C validator |