Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumltlt Structured version   Visualization version   GIF version

Theorem nn0sumltlt 44300
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.)
Assertion
Ref Expression
nn0sumltlt ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < 𝑐))

Proof of Theorem nn0sumltlt
StepHypRef Expression
1 nn0re 11900 . . 3 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2 nn0re 11900 . . 3 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
3 nn0re 11900 . . 3 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
4 ltaddsub2 11109 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐𝑏 < (𝑐𝑎)))
51, 2, 3, 4syl3an 1154 . 2 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < (𝑐𝑎)))
6 nn0ge0 11916 . . . . 5 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
763ad2ant1 1127 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 0 ≤ 𝑎)
81, 3anim12ci 613 . . . . . 6 ((𝑎 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ))
983adant2 1125 . . . . 5 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ))
10 subge02 11150 . . . . . 6 ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐𝑎) ≤ 𝑐))
1110bicomd 224 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎))
129, 11syl 17 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑐𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎))
137, 12mpbird 258 . . 3 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ≤ 𝑐)
1423ad2ant2 1128 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ)
15 nn0resubcl 43393 . . . . . 6 ((𝑐 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
1615ancoms 459 . . . . 5 ((𝑎 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
17163adant2 1125 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
1833ad2ant3 1129 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ)
19 ltletr 10726 . . . 4 ((𝑏 ∈ ℝ ∧ (𝑐𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐𝑎) ∧ (𝑐𝑎) ≤ 𝑐) → 𝑏 < 𝑐))
2014, 17, 18, 19syl3anc 1365 . . 3 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑏 < (𝑐𝑎) ∧ (𝑐𝑎) ≤ 𝑐) → 𝑏 < 𝑐))
2113, 20mpan2d 690 . 2 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑏 < (𝑐𝑎) → 𝑏 < 𝑐))
225, 21sylbid 241 1 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < 𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081  wcel 2107   class class class wbr 5063  (class class class)co 7150  cr 10530  0cc0 10531   + caddc 10534   < clt 10669  cle 10670  cmin 10864  0cn0 11891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892
This theorem is referenced by:  ply1mulgsumlem1  44342
  Copyright terms: Public domain W3C validator