Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumltlt Structured version   Visualization version   GIF version

Theorem nn0sumltlt 45240
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.)
Assertion
Ref Expression
nn0sumltlt ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < 𝑐))

Proof of Theorem nn0sumltlt
StepHypRef Expression
1 nn0re 11985 . . 3 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2 nn0re 11985 . . 3 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
3 nn0re 11985 . . 3 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
4 ltaddsub2 11193 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐𝑏 < (𝑐𝑎)))
51, 2, 3, 4syl3an 1161 . 2 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < (𝑐𝑎)))
6 nn0ge0 12001 . . . . 5 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
763ad2ant1 1134 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 0 ≤ 𝑎)
81, 3anim12ci 617 . . . . . 6 ((𝑎 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ))
983adant2 1132 . . . . 5 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ))
10 subge02 11234 . . . . . 6 ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐𝑎) ≤ 𝑐))
1110bicomd 226 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎))
129, 11syl 17 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑐𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎))
137, 12mpbird 260 . . 3 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ≤ 𝑐)
1423ad2ant2 1135 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ)
15 nn0resubcl 44354 . . . . . 6 ((𝑐 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
1615ancoms 462 . . . . 5 ((𝑎 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
17163adant2 1132 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑐𝑎) ∈ ℝ)
1833ad2ant3 1136 . . . 4 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ)
19 ltletr 10810 . . . 4 ((𝑏 ∈ ℝ ∧ (𝑐𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐𝑎) ∧ (𝑐𝑎) ≤ 𝑐) → 𝑏 < 𝑐))
2014, 17, 18, 19syl3anc 1372 . . 3 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑏 < (𝑐𝑎) ∧ (𝑐𝑎) ≤ 𝑐) → 𝑏 < 𝑐))
2113, 20mpan2d 694 . 2 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → (𝑏 < (𝑐𝑎) → 𝑏 < 𝑐))
225, 21sylbid 243 1 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐𝑏 < 𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088  wcel 2114   class class class wbr 5030  (class class class)co 7170  cr 10614  0cc0 10615   + caddc 10618   < clt 10753  cle 10754  cmin 10948  0cn0 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977
This theorem is referenced by:  ply1mulgsumlem1  45281
  Copyright terms: Public domain W3C validator