Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0sumltlt | Structured version Visualization version GIF version |
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.) |
Ref | Expression |
---|---|
nn0sumltlt | ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11985 | . . 3 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ) | |
2 | nn0re 11985 | . . 3 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
3 | nn0re 11985 | . . 3 ⊢ (𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ) | |
4 | ltaddsub2 11193 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) | |
5 | 1, 2, 3, 4 | syl3an 1161 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) |
6 | nn0ge0 12001 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 0 ≤ 𝑎) | |
7 | 6 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 0 ≤ 𝑎) |
8 | 1, 3 | anim12ci 617 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
9 | 8 | 3adant2 1132 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
10 | subge02 11234 | . . . . . 6 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐 − 𝑎) ≤ 𝑐)) | |
11 | 10 | bicomd 226 | . . . . 5 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
13 | 7, 12 | mpbird 260 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ≤ 𝑐) |
14 | 2 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ) |
15 | nn0resubcl 44354 | . . . . . 6 ⊢ ((𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) | |
16 | 15 | ancoms 462 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
17 | 16 | 3adant2 1132 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
18 | 3 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ) |
19 | ltletr 10810 | . . . 4 ⊢ ((𝑏 ∈ ℝ ∧ (𝑐 − 𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) | |
20 | 14, 17, 18, 19 | syl3anc 1372 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) |
21 | 13, 20 | mpan2d 694 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑏 < (𝑐 − 𝑎) → 𝑏 < 𝑐)) |
22 | 5, 21 | sylbid 243 | 1 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 ∈ wcel 2114 class class class wbr 5030 (class class class)co 7170 ℝcr 10614 0cc0 10615 + caddc 10618 < clt 10753 ≤ cle 10754 − cmin 10948 ℕ0cn0 11976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-n0 11977 |
This theorem is referenced by: ply1mulgsumlem1 45281 |
Copyright terms: Public domain | W3C validator |