Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem1 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem1 44447
Description: Lemma 1 for ply1mulgsum 44451. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠)   · (𝑛,𝑠)   × (𝑛,𝑠)   (𝑛,𝑠)   (𝑛,𝑠)   𝑀(𝑛,𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem ply1mulgsumlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
2 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
3 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 eqid 2824 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4coe1ae0 20387 . . 3 (𝐾𝐵 → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
653ad2ant2 1130 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
7 ply1mulgsum.c . . . . 5 𝐶 = (coe1𝐿)
87, 2, 3, 4coe1ae0 20387 . . . 4 (𝐿𝐵 → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
983ad2ant3 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
10 nn0addcl 11935 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 + 𝑏) ∈ ℕ0)
1110adantr 483 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑎 + 𝑏) ∈ ℕ0)
1211adantr 483 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → (𝑎 + 𝑏) ∈ ℕ0)
13 breq1 5072 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑎 + 𝑏) → (𝑠 < 𝑛 ↔ (𝑎 + 𝑏) < 𝑛))
1413imbi1d 344 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑎 + 𝑏) → ((𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1514ralbidv 3200 . . . . . . . . . . . . . . 15 (𝑠 = (𝑎 + 𝑏) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1615adantl 484 . . . . . . . . . . . . . 14 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) ∧ 𝑠 = (𝑎 + 𝑏)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
17 r19.26 3173 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) ↔ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))))
18 nn0cn 11910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
1918adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑎 ∈ ℂ)
20 nn0cn 11910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
2120adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑏 ∈ ℂ)
2219, 21addcomd 10845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
23223adant3 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
2423breq1d 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 ↔ (𝑏 + 𝑎) < 𝑛))
25 nn0sumltlt 44405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑏 + 𝑎) < 𝑛𝑎 < 𝑛))
2624, 25sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
27263expia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2827ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2928adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
3029imp 409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
3130imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐶𝑛) = (0g𝑅))))
3231com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅))))
3332imp 409 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅)))
34 nn0sumltlt 44405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
35343expia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3635adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3736imp 409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
3837imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐴𝑛) = (0g𝑅))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅))))
4039imp 409 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅)))
4133, 40anim12d 610 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅))))
4241imp 409 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅)))
4342ancomd 464 . . . . . . . . . . . . . . . . . . 19 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))
4443exp31 422 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4544com23 86 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4645ralimdva 3180 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4717, 46syl5bir 245 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4847imp 409 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
4912, 16, 48rspcedvd 3629 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
5049exp31 422 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5150com23 86 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5251expd 418 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5352com34 91 . . . . . . . . 9 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5453impancom 454 . . . . . . . 8 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5554com14 96 . . . . . . 7 (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5655impcom 410 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5756rexlimiva 3284 . . . . 5 (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5857com13 88 . . . 4 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5958rexlimiva 3284 . . 3 (∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
609, 59mpcom 38 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
616, 60mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538   + caddc 10543   < clt 10678  0cn0 11900  Basecbs 16486  .rcmulr 16569   ·𝑠 cvsca 16572  0gc0g 16716  .gcmg 18227  mulGrpcmgp 19242  Ringcrg 19300  var1cv1 20347  Poly1cpl1 20348  coe1cco1 20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-tset 16587  df-ple 16588  df-psr 20139  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-ply1 20353  df-coe1 20354
This theorem is referenced by:  ply1mulgsumlem2  44448
  Copyright terms: Public domain W3C validator