Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem1 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem1 46457
Description: Lemma 1 for ply1mulgsum 46461. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠)   · (𝑛,𝑠)   × (𝑛,𝑠)   (𝑛,𝑠)   (𝑛,𝑠)   𝑀(𝑛,𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem ply1mulgsumlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
2 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
3 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 eqid 2736 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4coe1ae0 21587 . . 3 (𝐾𝐵 → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
653ad2ant2 1134 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
7 ply1mulgsum.c . . . . 5 𝐶 = (coe1𝐿)
87, 2, 3, 4coe1ae0 21587 . . . 4 (𝐿𝐵 → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
983ad2ant3 1135 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
10 nn0addcl 12448 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 + 𝑏) ∈ ℕ0)
1110adantr 481 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑎 + 𝑏) ∈ ℕ0)
1211adantr 481 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → (𝑎 + 𝑏) ∈ ℕ0)
13 breq1 5108 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑎 + 𝑏) → (𝑠 < 𝑛 ↔ (𝑎 + 𝑏) < 𝑛))
1413imbi1d 341 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑎 + 𝑏) → ((𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1514ralbidv 3174 . . . . . . . . . . . . . . 15 (𝑠 = (𝑎 + 𝑏) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1615adantl 482 . . . . . . . . . . . . . 14 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) ∧ 𝑠 = (𝑎 + 𝑏)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
17 r19.26 3114 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) ↔ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))))
18 nn0cn 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
1918adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑎 ∈ ℂ)
20 nn0cn 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
2120adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑏 ∈ ℂ)
2219, 21addcomd 11357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
23223adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
2423breq1d 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 ↔ (𝑏 + 𝑎) < 𝑛))
25 nn0sumltlt 46416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑏 + 𝑎) < 𝑛𝑎 < 𝑛))
2624, 25sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
27263expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2827ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2928adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
3029imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
3130imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐶𝑛) = (0g𝑅))))
3231com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅))))
3332imp 407 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅)))
34 nn0sumltlt 46416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
35343expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3635adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3736imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
3837imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐴𝑛) = (0g𝑅))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅))))
4039imp 407 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅)))
4133, 40anim12d 609 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅))))
4241imp 407 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅)))
4342ancomd 462 . . . . . . . . . . . . . . . . . . 19 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))
4443exp31 420 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4544com23 86 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4645ralimdva 3164 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4717, 46biimtrrid 242 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4847imp 407 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
4912, 16, 48rspcedvd 3583 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
5049exp31 420 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5150com23 86 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5251expd 416 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5352com34 91 . . . . . . . . 9 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5453impancom 452 . . . . . . . 8 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5554com14 96 . . . . . . 7 (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5655impcom 408 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5756rexlimiva 3144 . . . . 5 (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5857com13 88 . . . 4 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5958rexlimiva 3144 . . 3 (∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
609, 59mpcom 38 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
616, 60mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049   + caddc 11054   < clt 11189  0cn0 12413  Basecbs 17083  .rcmulr 17134   ·𝑠 cvsca 17137  0gc0g 17321  .gcmg 18872  mulGrpcmgp 19896  Ringcrg 19964  var1cv1 21547  Poly1cpl1 21548  coe1cco1 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-ple 17153  df-psr 21311  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-ply1 21553  df-coe1 21554
This theorem is referenced by:  ply1mulgsumlem2  46458
  Copyright terms: Public domain W3C validator