Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem1 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem1 48362
Description: Lemma 1 for ply1mulgsum 48366. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠)   · (𝑛,𝑠)   × (𝑛,𝑠)   (𝑛,𝑠)   (𝑛,𝑠)   𝑀(𝑛,𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem ply1mulgsumlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
2 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
3 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 eqid 2735 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4coe1ae0 22152 . . 3 (𝐾𝐵 → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
653ad2ant2 1134 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
7 ply1mulgsum.c . . . . 5 𝐶 = (coe1𝐿)
87, 2, 3, 4coe1ae0 22152 . . . 4 (𝐿𝐵 → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
983ad2ant3 1135 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
10 nn0addcl 12536 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 + 𝑏) ∈ ℕ0)
1110adantr 480 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑎 + 𝑏) ∈ ℕ0)
1211adantr 480 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → (𝑎 + 𝑏) ∈ ℕ0)
13 breq1 5122 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑎 + 𝑏) → (𝑠 < 𝑛 ↔ (𝑎 + 𝑏) < 𝑛))
1413imbi1d 341 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑎 + 𝑏) → ((𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1514ralbidv 3163 . . . . . . . . . . . . . . 15 (𝑠 = (𝑎 + 𝑏) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1615adantl 481 . . . . . . . . . . . . . 14 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) ∧ 𝑠 = (𝑎 + 𝑏)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
17 r19.26 3098 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) ↔ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))))
18 nn0cn 12511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
1918adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑎 ∈ ℂ)
20 nn0cn 12511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
2120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑏 ∈ ℂ)
2219, 21addcomd 11437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
23223adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
2423breq1d 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 ↔ (𝑏 + 𝑎) < 𝑛))
25 nn0sumltlt 48325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑏 + 𝑎) < 𝑛𝑎 < 𝑛))
2624, 25sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
27263expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2827ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2928adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
3029imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
3130imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐶𝑛) = (0g𝑅))))
3231com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅))))
3332imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅)))
34 nn0sumltlt 48325 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
35343expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3736imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
3837imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐴𝑛) = (0g𝑅))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅))))
4039imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅)))
4133, 40anim12d 609 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅))))
4241imp 406 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅)))
4342ancomd 461 . . . . . . . . . . . . . . . . . . 19 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))
4443exp31 419 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4544com23 86 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4645ralimdva 3152 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4717, 46biimtrrid 243 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4847imp 406 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
4912, 16, 48rspcedvd 3603 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
5049exp31 419 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5150com23 86 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5251expd 415 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5352com34 91 . . . . . . . . 9 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5453impancom 451 . . . . . . . 8 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5554com14 96 . . . . . . 7 (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5655impcom 407 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5756rexlimiva 3133 . . . . 5 (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5857com13 88 . . . 4 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5958rexlimiva 3133 . . 3 (∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
609, 59mpcom 38 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
616, 60mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127   + caddc 11132   < clt 11269  0cn0 12501  Basecbs 17228  .rcmulr 17272   ·𝑠 cvsca 17275  0gc0g 17453  .gcmg 19050  mulGrpcmgp 20100  Ringcrg 20193  var1cv1 22111  Poly1cpl1 22112  coe1cco1 22113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-tset 17290  df-ple 17291  df-psr 21869  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-ply1 22117  df-coe1 22118
This theorem is referenced by:  ply1mulgsumlem2  48363
  Copyright terms: Public domain W3C validator