MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madefi Structured version   Visualization version   GIF version

Theorem madefi 27851
Description: The made set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
madefi (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)

Proof of Theorem madefi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . 3 (𝑥 = 𝑦 → ( M ‘𝑥) = ( M ‘𝑦))
21eleq1d 2814 . 2 (𝑥 = 𝑦 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝑦) ∈ Fin))
3 fveq2 6817 . . 3 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
43eleq1d 2814 . 2 (𝑥 = 𝐴 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝐴) ∈ Fin))
5 nnon 7797 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ On)
6 madeval 27786 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
75, 6syl 17 . . . . 5 (𝑥 ∈ ω → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
87adantr 480 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
9 madef 27790 . . . . . . . . . . 11 M :On⟶𝒫 No
10 ffun 6650 . . . . . . . . . . 11 ( M :On⟶𝒫 No → Fun M )
119, 10ax-mp 5 . . . . . . . . . 10 Fun M
12 nnfi 9072 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
13 imafi 9194 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ∈ Fin) → ( M “ 𝑥) ∈ Fin)
1411, 12, 13sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → ( M “ 𝑥) ∈ Fin)
1514adantr 480 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
16 onss 7713 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
175, 16syl 17 . . . . . . . . . . 11 (𝑥 ∈ ω → 𝑥 ⊆ On)
189fdmi 6658 . . . . . . . . . . 11 dom M = On
1917, 18sseqtrrdi 3974 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ⊆ dom M )
20 funimass4 6881 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ⊆ dom M ) → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2111, 19, 20sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2221biimpar 477 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ⊆ Fin)
23 unifi 9223 . . . . . . . 8 ((( M “ 𝑥) ∈ Fin ∧ ( M “ 𝑥) ⊆ Fin) → ( M “ 𝑥) ∈ Fin)
2415, 22, 23syl2anc 584 . . . . . . 7 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
25 pwfi 9198 . . . . . . 7 ( ( M “ 𝑥) ∈ Fin ↔ 𝒫 ( M “ 𝑥) ∈ Fin)
2624, 25sylib 218 . . . . . 6 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → 𝒫 ( M “ 𝑥) ∈ Fin)
27 xpfi 9199 . . . . . 6 ((𝒫 ( M “ 𝑥) ∈ Fin ∧ 𝒫 ( M “ 𝑥) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
2826, 26, 27syl2anc 584 . . . . 5 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
29 vex 3438 . . . . . . . . . . 11 𝑥 ∈ V
3029funimaex 6565 . . . . . . . . . 10 (Fun M → ( M “ 𝑥) ∈ V)
3111, 30ax-mp 5 . . . . . . . . 9 ( M “ 𝑥) ∈ V
3231uniex 7669 . . . . . . . 8 ( M “ 𝑥) ∈ V
3332pwex 5316 . . . . . . 7 𝒫 ( M “ 𝑥) ∈ V
3433, 33xpex 7681 . . . . . 6 (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V
35 scutf 27746 . . . . . . 7 |s : <<s ⟶ No
36 ffun 6650 . . . . . . 7 ( |s : <<s ⟶ No → Fun |s )
3735, 36ax-mp 5 . . . . . 6 Fun |s
38 imadomg 10417 . . . . . 6 ((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V → (Fun |s → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
3934, 37, 38mp2 9 . . . . 5 ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))
40 domfi 9093 . . . . 5 (((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin ∧ ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
4128, 39, 40sylancl 586 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
428, 41eqeltrd 2829 . . 3 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) ∈ Fin)
4342ex 412 . 2 (𝑥 ∈ ω → (∀𝑦𝑥 ( M ‘𝑦) ∈ Fin → ( M ‘𝑥) ∈ Fin))
442, 4, 43omsinds 7812 1 (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900  𝒫 cpw 4548   cuni 4857   class class class wbr 5089   × cxp 5612  dom cdm 5614  cima 5617  Oncon0 6302  Fun wfun 6471  wf 6473  cfv 6477  ωcom 7791  cdom 8862  Fincfn 8864   No csur 27571   <<s csslt 27713   |s cscut 27715   M cmade 27776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-ac2 10346
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-fin 8868  df-card 9824  df-acn 9827  df-ac 9999  df-no 27574  df-slt 27575  df-bday 27576  df-sslt 27714  df-scut 27716  df-made 27781
This theorem is referenced by:  oldfi  27852
  Copyright terms: Public domain W3C validator