MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madefi Structured version   Visualization version   GIF version

Theorem madefi 27968
Description: The made set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
madefi (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)

Proof of Theorem madefi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . 3 (𝑥 = 𝑦 → ( M ‘𝑥) = ( M ‘𝑦))
21eleq1d 2829 . 2 (𝑥 = 𝑦 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝑦) ∈ Fin))
3 fveq2 6920 . . 3 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
43eleq1d 2829 . 2 (𝑥 = 𝐴 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝐴) ∈ Fin))
5 nnon 7909 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ On)
6 madeval 27909 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
75, 6syl 17 . . . . 5 (𝑥 ∈ ω → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
87adantr 480 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
9 madef 27913 . . . . . . . . . . 11 M :On⟶𝒫 No
10 ffun 6750 . . . . . . . . . . 11 ( M :On⟶𝒫 No → Fun M )
119, 10ax-mp 5 . . . . . . . . . 10 Fun M
12 nnfi 9233 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
13 imafi 9381 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ∈ Fin) → ( M “ 𝑥) ∈ Fin)
1411, 12, 13sylancr 586 . . . . . . . . 9 (𝑥 ∈ ω → ( M “ 𝑥) ∈ Fin)
1514adantr 480 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
16 onss 7820 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
175, 16syl 17 . . . . . . . . . . 11 (𝑥 ∈ ω → 𝑥 ⊆ On)
189fdmi 6758 . . . . . . . . . . 11 dom M = On
1917, 18sseqtrrdi 4060 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ⊆ dom M )
20 funimass4 6986 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ⊆ dom M ) → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2111, 19, 20sylancr 586 . . . . . . . . 9 (𝑥 ∈ ω → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2221biimpar 477 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ⊆ Fin)
23 unifi 9412 . . . . . . . 8 ((( M “ 𝑥) ∈ Fin ∧ ( M “ 𝑥) ⊆ Fin) → ( M “ 𝑥) ∈ Fin)
2415, 22, 23syl2anc 583 . . . . . . 7 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
25 pwfi 9385 . . . . . . 7 ( ( M “ 𝑥) ∈ Fin ↔ 𝒫 ( M “ 𝑥) ∈ Fin)
2624, 25sylib 218 . . . . . 6 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → 𝒫 ( M “ 𝑥) ∈ Fin)
27 xpfi 9386 . . . . . 6 ((𝒫 ( M “ 𝑥) ∈ Fin ∧ 𝒫 ( M “ 𝑥) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
2826, 26, 27syl2anc 583 . . . . 5 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
29 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
3029funimaex 6666 . . . . . . . . . 10 (Fun M → ( M “ 𝑥) ∈ V)
3111, 30ax-mp 5 . . . . . . . . 9 ( M “ 𝑥) ∈ V
3231uniex 7776 . . . . . . . 8 ( M “ 𝑥) ∈ V
3332pwex 5398 . . . . . . 7 𝒫 ( M “ 𝑥) ∈ V
3433, 33xpex 7788 . . . . . 6 (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V
35 scutf 27875 . . . . . . 7 |s : <<s ⟶ No
36 ffun 6750 . . . . . . 7 ( |s : <<s ⟶ No → Fun |s )
3735, 36ax-mp 5 . . . . . 6 Fun |s
38 imadomg 10603 . . . . . 6 ((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V → (Fun |s → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
3934, 37, 38mp2 9 . . . . 5 ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))
40 domfi 9255 . . . . 5 (((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin ∧ ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
4128, 39, 40sylancl 585 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
428, 41eqeltrd 2844 . . 3 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) ∈ Fin)
4342ex 412 . 2 (𝑥 ∈ ω → (∀𝑦𝑥 ( M ‘𝑦) ∈ Fin → ( M ‘𝑥) ∈ Fin))
442, 4, 43omsinds 7924 1 (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166   × cxp 5698  dom cdm 5700  cima 5703  Oncon0 6395  Fun wfun 6567  wf 6569  cfv 6573  ωcom 7903  cdom 9001  Fincfn 9003   No csur 27702   <<s csslt 27843   |s cscut 27845   M cmade 27899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-card 10008  df-acn 10011  df-ac 10185  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-made 27904
This theorem is referenced by:  oldfi  27969
  Copyright terms: Public domain W3C validator