MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madefi Structured version   Visualization version   GIF version

Theorem madefi 27951
Description: The made set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
madefi (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)

Proof of Theorem madefi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . 3 (𝑥 = 𝑦 → ( M ‘𝑥) = ( M ‘𝑦))
21eleq1d 2825 . 2 (𝑥 = 𝑦 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝑦) ∈ Fin))
3 fveq2 6905 . . 3 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
43eleq1d 2825 . 2 (𝑥 = 𝐴 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝐴) ∈ Fin))
5 nnon 7894 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ On)
6 madeval 27892 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
75, 6syl 17 . . . . 5 (𝑥 ∈ ω → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
87adantr 480 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
9 madef 27896 . . . . . . . . . . 11 M :On⟶𝒫 No
10 ffun 6738 . . . . . . . . . . 11 ( M :On⟶𝒫 No → Fun M )
119, 10ax-mp 5 . . . . . . . . . 10 Fun M
12 nnfi 9208 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
13 imafi 9354 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ∈ Fin) → ( M “ 𝑥) ∈ Fin)
1411, 12, 13sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → ( M “ 𝑥) ∈ Fin)
1514adantr 480 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
16 onss 7806 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
175, 16syl 17 . . . . . . . . . . 11 (𝑥 ∈ ω → 𝑥 ⊆ On)
189fdmi 6746 . . . . . . . . . . 11 dom M = On
1917, 18sseqtrrdi 4024 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ⊆ dom M )
20 funimass4 6972 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ⊆ dom M ) → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2111, 19, 20sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2221biimpar 477 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ⊆ Fin)
23 unifi 9385 . . . . . . . 8 ((( M “ 𝑥) ∈ Fin ∧ ( M “ 𝑥) ⊆ Fin) → ( M “ 𝑥) ∈ Fin)
2415, 22, 23syl2anc 584 . . . . . . 7 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
25 pwfi 9358 . . . . . . 7 ( ( M “ 𝑥) ∈ Fin ↔ 𝒫 ( M “ 𝑥) ∈ Fin)
2624, 25sylib 218 . . . . . 6 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → 𝒫 ( M “ 𝑥) ∈ Fin)
27 xpfi 9359 . . . . . 6 ((𝒫 ( M “ 𝑥) ∈ Fin ∧ 𝒫 ( M “ 𝑥) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
2826, 26, 27syl2anc 584 . . . . 5 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
29 vex 3483 . . . . . . . . . . 11 𝑥 ∈ V
3029funimaex 6654 . . . . . . . . . 10 (Fun M → ( M “ 𝑥) ∈ V)
3111, 30ax-mp 5 . . . . . . . . 9 ( M “ 𝑥) ∈ V
3231uniex 7762 . . . . . . . 8 ( M “ 𝑥) ∈ V
3332pwex 5379 . . . . . . 7 𝒫 ( M “ 𝑥) ∈ V
3433, 33xpex 7774 . . . . . 6 (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V
35 scutf 27858 . . . . . . 7 |s : <<s ⟶ No
36 ffun 6738 . . . . . . 7 ( |s : <<s ⟶ No → Fun |s )
3735, 36ax-mp 5 . . . . . 6 Fun |s
38 imadomg 10575 . . . . . 6 ((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V → (Fun |s → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
3934, 37, 38mp2 9 . . . . 5 ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))
40 domfi 9230 . . . . 5 (((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin ∧ ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
4128, 39, 40sylancl 586 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
428, 41eqeltrd 2840 . . 3 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) ∈ Fin)
4342ex 412 . 2 (𝑥 ∈ ω → (∀𝑦𝑥 ( M ‘𝑦) ∈ Fin → ( M ‘𝑥) ∈ Fin))
442, 4, 43omsinds 7909 1 (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  wss 3950  𝒫 cpw 4599   cuni 4906   class class class wbr 5142   × cxp 5682  dom cdm 5684  cima 5687  Oncon0 6383  Fun wfun 6554  wf 6556  cfv 6560  ωcom 7888  cdom 8984  Fincfn 8986   No csur 27685   <<s csslt 27826   |s cscut 27828   M cmade 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-ac2 10504
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-fin 8990  df-card 9980  df-acn 9983  df-ac 10157  df-no 27688  df-slt 27689  df-bday 27690  df-sslt 27827  df-scut 27829  df-made 27887
This theorem is referenced by:  oldfi  27952
  Copyright terms: Public domain W3C validator