MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madefi Structured version   Visualization version   GIF version

Theorem madefi 27824
Description: The made set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
madefi (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)

Proof of Theorem madefi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . 3 (𝑥 = 𝑦 → ( M ‘𝑥) = ( M ‘𝑦))
21eleq1d 2813 . 2 (𝑥 = 𝑦 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝑦) ∈ Fin))
3 fveq2 6858 . . 3 (𝑥 = 𝐴 → ( M ‘𝑥) = ( M ‘𝐴))
43eleq1d 2813 . 2 (𝑥 = 𝐴 → (( M ‘𝑥) ∈ Fin ↔ ( M ‘𝐴) ∈ Fin))
5 nnon 7848 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ On)
6 madeval 27760 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
75, 6syl 17 . . . . 5 (𝑥 ∈ ω → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
87adantr 480 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) = ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
9 madef 27764 . . . . . . . . . . 11 M :On⟶𝒫 No
10 ffun 6691 . . . . . . . . . . 11 ( M :On⟶𝒫 No → Fun M )
119, 10ax-mp 5 . . . . . . . . . 10 Fun M
12 nnfi 9131 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
13 imafi 9264 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ∈ Fin) → ( M “ 𝑥) ∈ Fin)
1411, 12, 13sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → ( M “ 𝑥) ∈ Fin)
1514adantr 480 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
16 onss 7761 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
175, 16syl 17 . . . . . . . . . . 11 (𝑥 ∈ ω → 𝑥 ⊆ On)
189fdmi 6699 . . . . . . . . . . 11 dom M = On
1917, 18sseqtrrdi 3988 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ⊆ dom M )
20 funimass4 6925 . . . . . . . . . 10 ((Fun M ∧ 𝑥 ⊆ dom M ) → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2111, 19, 20sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → (( M “ 𝑥) ⊆ Fin ↔ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin))
2221biimpar 477 . . . . . . . 8 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ⊆ Fin)
23 unifi 9295 . . . . . . . 8 ((( M “ 𝑥) ∈ Fin ∧ ( M “ 𝑥) ⊆ Fin) → ( M “ 𝑥) ∈ Fin)
2415, 22, 23syl2anc 584 . . . . . . 7 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M “ 𝑥) ∈ Fin)
25 pwfi 9268 . . . . . . 7 ( ( M “ 𝑥) ∈ Fin ↔ 𝒫 ( M “ 𝑥) ∈ Fin)
2624, 25sylib 218 . . . . . 6 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → 𝒫 ( M “ 𝑥) ∈ Fin)
27 xpfi 9269 . . . . . 6 ((𝒫 ( M “ 𝑥) ∈ Fin ∧ 𝒫 ( M “ 𝑥) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
2826, 26, 27syl2anc 584 . . . . 5 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin)
29 vex 3451 . . . . . . . . . . 11 𝑥 ∈ V
3029funimaex 6605 . . . . . . . . . 10 (Fun M → ( M “ 𝑥) ∈ V)
3111, 30ax-mp 5 . . . . . . . . 9 ( M “ 𝑥) ∈ V
3231uniex 7717 . . . . . . . 8 ( M “ 𝑥) ∈ V
3332pwex 5335 . . . . . . 7 𝒫 ( M “ 𝑥) ∈ V
3433, 33xpex 7729 . . . . . 6 (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V
35 scutf 27724 . . . . . . 7 |s : <<s ⟶ No
36 ffun 6691 . . . . . . 7 ( |s : <<s ⟶ No → Fun |s )
3735, 36ax-mp 5 . . . . . 6 Fun |s
38 imadomg 10487 . . . . . 6 ((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ V → (Fun |s → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))))
3934, 37, 38mp2 9 . . . . 5 ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))
40 domfi 9153 . . . . 5 (((𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥)) ∈ Fin ∧ ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ≼ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
4128, 39, 40sylancl 586 . . . 4 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( |s “ (𝒫 ( M “ 𝑥) × 𝒫 ( M “ 𝑥))) ∈ Fin)
428, 41eqeltrd 2828 . . 3 ((𝑥 ∈ ω ∧ ∀𝑦𝑥 ( M ‘𝑦) ∈ Fin) → ( M ‘𝑥) ∈ Fin)
4342ex 412 . 2 (𝑥 ∈ ω → (∀𝑦𝑥 ( M ‘𝑦) ∈ Fin → ( M ‘𝑥) ∈ Fin))
442, 4, 43omsinds 7863 1 (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107   × cxp 5636  dom cdm 5638  cima 5641  Oncon0 6332  Fun wfun 6505  wf 6507  cfv 6511  ωcom 7842  cdom 8916  Fincfn 8918   No csur 27551   <<s csslt 27692   |s cscut 27694   M cmade 27750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-fin 8922  df-card 9892  df-acn 9895  df-ac 10069  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-made 27755
This theorem is referenced by:  oldfi  27825
  Copyright terms: Public domain W3C validator