MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsfi Structured version   Visualization version   GIF version

Theorem onsfi 28254
Description: A surreal ordinal with a finite birthday is a non-negative surreal integer. (Contributed by Scott Fenton, 4-Nov-2025.)
Assertion
Ref Expression
onsfi ((𝐴 ∈ Ons ∧ ( bday 𝐴) ∈ ω) → 𝐴 ∈ ℕ0s)

Proof of Theorem onsfi
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 3204 . . 3 (( bday 𝐴) ∈ ω ↔ ∃𝑥 ∈ ω 𝑥 = ( bday 𝐴))
2 eqeq1 2733 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 = ( bday 𝑎) ↔ 𝑧 = ( bday 𝑎)))
32imbi1d 341 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
43ralbidv 3152 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑎 ∈ Ons (𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
5 fveq2 6822 . . . . . . . . . . 11 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
65eqeq2d 2740 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑧 = ( bday 𝑎) ↔ 𝑧 = ( bday 𝑏)))
7 eleq1 2816 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎 ∈ ℕ0s𝑏 ∈ ℕ0s))
86, 7imbi12d 344 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
98cbvralvw 3207 . . . . . . . 8 (∀𝑎 ∈ Ons (𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s))
104, 9bitrdi 287 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
11 eqeq1 2733 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 = ( bday 𝑎) ↔ 𝑥 = ( bday 𝑎)))
1211imbi1d 341 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
1312ralbidv 3152 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑎 ∈ Ons (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
14 onscutlt 28172 . . . . . . . . . . . . 13 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
15143ad2ant3 1135 . . . . . . . . . . . 12 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
16 onssno 28162 . . . . . . . . . . . . . . . . . . 19 Ons No
17 simp13 1206 . . . . . . . . . . . . . . . . . . 19 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑎 ∈ Ons)
1816, 17sselid 3933 . . . . . . . . . . . . . . . . . 18 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑎 No )
19 sltonold 28169 . . . . . . . . . . . . . . . . . 18 (𝑎 No → {𝑏 ∈ Ons𝑏 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
2018, 19syl 17 . . . . . . . . . . . . . . . . 17 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → {𝑏 ∈ Ons𝑏 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
21 breq1 5095 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → (𝑏 <s 𝑎𝑥 <s 𝑎))
22 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ Ons)
23 simp3 1138 . . . . . . . . . . . . . . . . . 18 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 <s 𝑎)
2421, 22, 23elrabd 3650 . . . . . . . . . . . . . . . . 17 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ {𝑏 ∈ Ons𝑏 <s 𝑎})
2520, 24sseldd 3936 . . . . . . . . . . . . . . . 16 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ ( O ‘( bday 𝑎)))
26 bdayelon 27686 . . . . . . . . . . . . . . . . 17 ( bday 𝑎) ∈ On
2716, 22sselid 3933 . . . . . . . . . . . . . . . . 17 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 No )
28 oldbday 27817 . . . . . . . . . . . . . . . . 17 ((( bday 𝑎) ∈ On ∧ 𝑥 No ) → (𝑥 ∈ ( O ‘( bday 𝑎)) ↔ ( bday 𝑥) ∈ ( bday 𝑎)))
2926, 27, 28sylancr 587 . . . . . . . . . . . . . . . 16 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → (𝑥 ∈ ( O ‘( bday 𝑎)) ↔ ( bday 𝑥) ∈ ( bday 𝑎)))
3025, 29mpbid 232 . . . . . . . . . . . . . . 15 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → ( bday 𝑥) ∈ ( bday 𝑎))
31 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ( bday 𝑏) = ( bday 𝑥))
3231eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (( bday 𝑏) ∈ ( bday 𝑎) ↔ ( bday 𝑥) ∈ ( bday 𝑎)))
33 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑏 ∈ ℕ0s𝑥 ∈ ℕ0s))
3432, 33imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → ((( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ↔ (( bday 𝑥) ∈ ( bday 𝑎) → 𝑥 ∈ ℕ0s)))
35 simp12 1205 . . . . . . . . . . . . . . . 16 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
3634, 35, 22rspcdva 3578 . . . . . . . . . . . . . . 15 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → (( bday 𝑥) ∈ ( bday 𝑎) → 𝑥 ∈ ℕ0s))
3730, 36mpd 15 . . . . . . . . . . . . . 14 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ ℕ0s)
3837rabssdv 4026 . . . . . . . . . . . . 13 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ℕ0s)
39 oldfi 27830 . . . . . . . . . . . . . . 15 (( bday 𝑎) ∈ ω → ( O ‘( bday 𝑎)) ∈ Fin)
40393ad2ant1 1133 . . . . . . . . . . . . . 14 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → ( O ‘( bday 𝑎)) ∈ Fin)
41 onsno 28163 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Ons𝑎 No )
42413ad2ant3 1135 . . . . . . . . . . . . . . 15 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 No )
43 sltonold 28169 . . . . . . . . . . . . . . 15 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
4442, 43syl 17 . . . . . . . . . . . . . 14 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
4540, 44ssfid 9158 . . . . . . . . . . . . 13 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ Fin)
46 n0sfincut 28253 . . . . . . . . . . . . 13 (({𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ℕ0s ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ Fin) → ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅) ∈ ℕ0s)
4738, 45, 46syl2anc 584 . . . . . . . . . . . 12 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅) ∈ ℕ0s)
4815, 47eqeltrd 2828 . . . . . . . . . . 11 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 ∈ ℕ0s)
49483exp 1119 . . . . . . . . . 10 (( bday 𝑎) ∈ ω → (∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s)))
50 eleq1 2816 . . . . . . . . . . 11 (𝑦 = ( bday 𝑎) → (𝑦 ∈ ω ↔ ( bday 𝑎) ∈ ω))
51 raleq 3286 . . . . . . . . . . . . 13 (𝑦 = ( bday 𝑎) → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑧 ∈ ( bday 𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
52 ralcom 3257 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ( bday 𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s))
53 df-ral 3045 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑧(𝑧 ∈ ( bday 𝑎) → (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
54 bi2.04 387 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( bday 𝑎) → (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)) ↔ (𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
5554albii 1819 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧 ∈ ( bday 𝑎) → (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)) ↔ ∀𝑧(𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
56 fvex 6835 . . . . . . . . . . . . . . . . 17 ( bday 𝑏) ∈ V
57 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) ↔ ( bday 𝑏) ∈ ( bday 𝑎)))
5857imbi1d 341 . . . . . . . . . . . . . . . . 17 (𝑧 = ( bday 𝑏) → ((𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ↔ (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
5956, 58ceqsalv 3476 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)) ↔ (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6053, 55, 593bitri 297 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6160ralbii 3075 . . . . . . . . . . . . . 14 (∀𝑏 ∈ Ons𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6252, 61bitri 275 . . . . . . . . . . . . 13 (∀𝑧 ∈ ( bday 𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6351, 62bitrdi 287 . . . . . . . . . . . 12 (𝑦 = ( bday 𝑎) → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
6463imbi1d 341 . . . . . . . . . . 11 (𝑦 = ( bday 𝑎) → ((∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s)) ↔ (∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s))))
6550, 64imbi12d 344 . . . . . . . . . 10 (𝑦 = ( bday 𝑎) → ((𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s))) ↔ (( bday 𝑎) ∈ ω → (∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s)))))
6649, 65mpbiri 258 . . . . . . . . 9 (𝑦 = ( bday 𝑎) → (𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s))))
6766com4l 92 . . . . . . . 8 (𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons → (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s))))
6867ralrimdv 3127 . . . . . . 7 (𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → ∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
6910, 13, 68omsinds 7820 . . . . . 6 (𝑥 ∈ ω → ∀𝑎 ∈ Ons (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s))
70 fveq2 6822 . . . . . . . . 9 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
7170eqeq2d 2740 . . . . . . . 8 (𝑎 = 𝐴 → (𝑥 = ( bday 𝑎) ↔ 𝑥 = ( bday 𝐴)))
72 eleq1 2816 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 ∈ ℕ0s𝐴 ∈ ℕ0s))
7371, 72imbi12d 344 . . . . . . 7 (𝑎 = 𝐴 → ((𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑥 = ( bday 𝐴) → 𝐴 ∈ ℕ0s)))
7473rspccv 3574 . . . . . 6 (∀𝑎 ∈ Ons (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) → (𝐴 ∈ Ons → (𝑥 = ( bday 𝐴) → 𝐴 ∈ ℕ0s)))
7569, 74syl 17 . . . . 5 (𝑥 ∈ ω → (𝐴 ∈ Ons → (𝑥 = ( bday 𝐴) → 𝐴 ∈ ℕ0s)))
7675com23 86 . . . 4 (𝑥 ∈ ω → (𝑥 = ( bday 𝐴) → (𝐴 ∈ Ons𝐴 ∈ ℕ0s)))
7776rexlimiv 3123 . . 3 (∃𝑥 ∈ ω 𝑥 = ( bday 𝐴) → (𝐴 ∈ Ons𝐴 ∈ ℕ0s))
781, 77sylbi 217 . 2 (( bday 𝐴) ∈ ω → (𝐴 ∈ Ons𝐴 ∈ ℕ0s))
7978impcom 407 1 ((𝐴 ∈ Ons ∧ ( bday 𝐴) ∈ ω) → 𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  wss 3903  c0 4284   class class class wbr 5092  Oncon0 6307  cfv 6482  (class class class)co 7349  ωcom 7799  Fincfn 8872   No csur 27549   <s cslt 27550   bday cbday 27551   |s cscut 27693   O cold 27755  Onscons 28159  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-fin 8876  df-card 9835  df-acn 9838  df-ac 10010  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-new 27761  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-ons 28160  df-n0s 28215
This theorem is referenced by:  onltn0s  28255
  Copyright terms: Public domain W3C validator