MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsfi Structured version   Visualization version   GIF version

Theorem onsfi 28283
Description: A surreal ordinal with a finite birthday is a non-negative surreal integer. (Contributed by Scott Fenton, 4-Nov-2025.)
Assertion
Ref Expression
onsfi ((𝐴 ∈ Ons ∧ ( bday 𝐴) ∈ ω) → 𝐴 ∈ ℕ0s)

Proof of Theorem onsfi
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 3207 . . 3 (( bday 𝐴) ∈ ω ↔ ∃𝑥 ∈ ω 𝑥 = ( bday 𝐴))
2 eqeq1 2735 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 = ( bday 𝑎) ↔ 𝑧 = ( bday 𝑎)))
32imbi1d 341 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
43ralbidv 3155 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑎 ∈ Ons (𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
5 fveq2 6822 . . . . . . . . . . 11 (𝑎 = 𝑏 → ( bday 𝑎) = ( bday 𝑏))
65eqeq2d 2742 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑧 = ( bday 𝑎) ↔ 𝑧 = ( bday 𝑏)))
7 eleq1 2819 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎 ∈ ℕ0s𝑏 ∈ ℕ0s))
86, 7imbi12d 344 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
98cbvralvw 3210 . . . . . . . 8 (∀𝑎 ∈ Ons (𝑧 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s))
104, 9bitrdi 287 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
11 eqeq1 2735 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 = ( bday 𝑎) ↔ 𝑥 = ( bday 𝑎)))
1211imbi1d 341 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
1312ralbidv 3155 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ ∀𝑎 ∈ Ons (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
14 onscutlt 28201 . . . . . . . . . . . . 13 (𝑎 ∈ Ons𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
15143ad2ant3 1135 . . . . . . . . . . . 12 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 = ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅))
16 onssno 28191 . . . . . . . . . . . . . . . . . . 19 Ons No
17 simp13 1206 . . . . . . . . . . . . . . . . . . 19 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑎 ∈ Ons)
1816, 17sselid 3927 . . . . . . . . . . . . . . . . . 18 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑎 No )
19 sltonold 28198 . . . . . . . . . . . . . . . . . 18 (𝑎 No → {𝑏 ∈ Ons𝑏 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
2018, 19syl 17 . . . . . . . . . . . . . . . . 17 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → {𝑏 ∈ Ons𝑏 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
21 breq1 5092 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → (𝑏 <s 𝑎𝑥 <s 𝑎))
22 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ Ons)
23 simp3 1138 . . . . . . . . . . . . . . . . . 18 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 <s 𝑎)
2421, 22, 23elrabd 3644 . . . . . . . . . . . . . . . . 17 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ {𝑏 ∈ Ons𝑏 <s 𝑎})
2520, 24sseldd 3930 . . . . . . . . . . . . . . . 16 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ ( O ‘( bday 𝑎)))
26 bdayelon 27715 . . . . . . . . . . . . . . . . 17 ( bday 𝑎) ∈ On
2716, 22sselid 3927 . . . . . . . . . . . . . . . . 17 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 No )
28 oldbday 27846 . . . . . . . . . . . . . . . . 17 ((( bday 𝑎) ∈ On ∧ 𝑥 No ) → (𝑥 ∈ ( O ‘( bday 𝑎)) ↔ ( bday 𝑥) ∈ ( bday 𝑎)))
2926, 27, 28sylancr 587 . . . . . . . . . . . . . . . 16 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → (𝑥 ∈ ( O ‘( bday 𝑎)) ↔ ( bday 𝑥) ∈ ( bday 𝑎)))
3025, 29mpbid 232 . . . . . . . . . . . . . . 15 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → ( bday 𝑥) ∈ ( bday 𝑎))
31 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ( bday 𝑏) = ( bday 𝑥))
3231eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (( bday 𝑏) ∈ ( bday 𝑎) ↔ ( bday 𝑥) ∈ ( bday 𝑎)))
33 eleq1 2819 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑏 ∈ ℕ0s𝑥 ∈ ℕ0s))
3432, 33imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → ((( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ↔ (( bday 𝑥) ∈ ( bday 𝑎) → 𝑥 ∈ ℕ0s)))
35 simp12 1205 . . . . . . . . . . . . . . . 16 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
3634, 35, 22rspcdva 3573 . . . . . . . . . . . . . . 15 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → (( bday 𝑥) ∈ ( bday 𝑎) → 𝑥 ∈ ℕ0s))
3730, 36mpd 15 . . . . . . . . . . . . . 14 (((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons𝑥 <s 𝑎) → 𝑥 ∈ ℕ0s)
3837rabssdv 4020 . . . . . . . . . . . . 13 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ℕ0s)
39 oldfi 27859 . . . . . . . . . . . . . . 15 (( bday 𝑎) ∈ ω → ( O ‘( bday 𝑎)) ∈ Fin)
40393ad2ant1 1133 . . . . . . . . . . . . . 14 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → ( O ‘( bday 𝑎)) ∈ Fin)
41 onsno 28192 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Ons𝑎 No )
42413ad2ant3 1135 . . . . . . . . . . . . . . 15 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 No )
43 sltonold 28198 . . . . . . . . . . . . . . 15 (𝑎 No → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
4442, 43syl 17 . . . . . . . . . . . . . 14 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ( O ‘( bday 𝑎)))
4540, 44ssfid 9153 . . . . . . . . . . . . 13 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ Fin)
46 n0sfincut 28282 . . . . . . . . . . . . 13 (({𝑥 ∈ Ons𝑥 <s 𝑎} ⊆ ℕ0s ∧ {𝑥 ∈ Ons𝑥 <s 𝑎} ∈ Fin) → ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅) ∈ ℕ0s)
4738, 45, 46syl2anc 584 . . . . . . . . . . . 12 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → ({𝑥 ∈ Ons𝑥 <s 𝑎} |s ∅) ∈ ℕ0s)
4815, 47eqeltrd 2831 . . . . . . . . . . 11 ((( bday 𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 ∈ ℕ0s)
49483exp 1119 . . . . . . . . . 10 (( bday 𝑎) ∈ ω → (∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s)))
50 eleq1 2819 . . . . . . . . . . 11 (𝑦 = ( bday 𝑎) → (𝑦 ∈ ω ↔ ( bday 𝑎) ∈ ω))
51 raleq 3289 . . . . . . . . . . . . 13 (𝑦 = ( bday 𝑎) → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑧 ∈ ( bday 𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
52 ralcom 3260 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ( bday 𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s))
53 df-ral 3048 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑧(𝑧 ∈ ( bday 𝑎) → (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)))
54 bi2.04 387 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( bday 𝑎) → (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)) ↔ (𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
5554albii 1820 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧 ∈ ( bday 𝑎) → (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s)) ↔ ∀𝑧(𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
56 fvex 6835 . . . . . . . . . . . . . . . . 17 ( bday 𝑏) ∈ V
57 eleq1 2819 . . . . . . . . . . . . . . . . . 18 (𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) ↔ ( bday 𝑏) ∈ ( bday 𝑎)))
5857imbi1d 341 . . . . . . . . . . . . . . . . 17 (𝑧 = ( bday 𝑏) → ((𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) ↔ (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
5956, 58ceqsalv 3476 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧 = ( bday 𝑏) → (𝑧 ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)) ↔ (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6053, 55, 593bitri 297 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6160ralbii 3078 . . . . . . . . . . . . . 14 (∀𝑏 ∈ Ons𝑧 ∈ ( bday 𝑎)(𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6252, 61bitri 275 . . . . . . . . . . . . 13 (∀𝑧 ∈ ( bday 𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s))
6351, 62bitrdi 287 . . . . . . . . . . . 12 (𝑦 = ( bday 𝑎) → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s)))
6463imbi1d 341 . . . . . . . . . . 11 (𝑦 = ( bday 𝑎) → ((∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s)) ↔ (∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s))))
6550, 64imbi12d 344 . . . . . . . . . 10 (𝑦 = ( bday 𝑎) → ((𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s))) ↔ (( bday 𝑎) ∈ ω → (∀𝑏 ∈ Ons (( bday 𝑏) ∈ ( bday 𝑎) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s)))))
6649, 65mpbiri 258 . . . . . . . . 9 (𝑦 = ( bday 𝑎) → (𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons𝑎 ∈ ℕ0s))))
6766com4l 92 . . . . . . . 8 (𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → (𝑎 ∈ Ons → (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s))))
6867ralrimdv 3130 . . . . . . 7 (𝑦 ∈ ω → (∀𝑧𝑦𝑏 ∈ Ons (𝑧 = ( bday 𝑏) → 𝑏 ∈ ℕ0s) → ∀𝑎 ∈ Ons (𝑦 = ( bday 𝑎) → 𝑎 ∈ ℕ0s)))
6910, 13, 68omsinds 7817 . . . . . 6 (𝑥 ∈ ω → ∀𝑎 ∈ Ons (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s))
70 fveq2 6822 . . . . . . . . 9 (𝑎 = 𝐴 → ( bday 𝑎) = ( bday 𝐴))
7170eqeq2d 2742 . . . . . . . 8 (𝑎 = 𝐴 → (𝑥 = ( bday 𝑎) ↔ 𝑥 = ( bday 𝐴)))
72 eleq1 2819 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 ∈ ℕ0s𝐴 ∈ ℕ0s))
7371, 72imbi12d 344 . . . . . . 7 (𝑎 = 𝐴 → ((𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) ↔ (𝑥 = ( bday 𝐴) → 𝐴 ∈ ℕ0s)))
7473rspccv 3569 . . . . . 6 (∀𝑎 ∈ Ons (𝑥 = ( bday 𝑎) → 𝑎 ∈ ℕ0s) → (𝐴 ∈ Ons → (𝑥 = ( bday 𝐴) → 𝐴 ∈ ℕ0s)))
7569, 74syl 17 . . . . 5 (𝑥 ∈ ω → (𝐴 ∈ Ons → (𝑥 = ( bday 𝐴) → 𝐴 ∈ ℕ0s)))
7675com23 86 . . . 4 (𝑥 ∈ ω → (𝑥 = ( bday 𝐴) → (𝐴 ∈ Ons𝐴 ∈ ℕ0s)))
7776rexlimiv 3126 . . 3 (∃𝑥 ∈ ω 𝑥 = ( bday 𝐴) → (𝐴 ∈ Ons𝐴 ∈ ℕ0s))
781, 77sylbi 217 . 2 (( bday 𝐴) ∈ ω → (𝐴 ∈ Ons𝐴 ∈ ℕ0s))
7978impcom 407 1 ((𝐴 ∈ Ons ∧ ( bday 𝐴) ∈ ω) → 𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4280   class class class wbr 5089  Oncon0 6306  cfv 6481  (class class class)co 7346  ωcom 7796  Fincfn 8869   No csur 27578   <s cslt 27579   bday cbday 27580   |s cscut 27722   O cold 27784  Onscons 28188  0scnn0s 28242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-fin 8873  df-card 9832  df-acn 9835  df-ac 10007  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-new 27790  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-ons 28189  df-n0s 28244
This theorem is referenced by:  onltn0s  28284
  Copyright terms: Public domain W3C validator