| Step | Hyp | Ref
| Expression |
| 1 | | risset 3217 |
. . 3
⊢ (( bday ‘𝐴) ∈ ω ↔ ∃𝑥 ∈ ω 𝑥 = ( bday
‘𝐴)) |
| 2 | | eqeq1 2739 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 = ( bday
‘𝑎) ↔
𝑧 = (
bday ‘𝑎))) |
| 3 | 2 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ (𝑧 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s))) |
| 4 | 3 | ralbidv 3163 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∀𝑎 ∈ Ons (𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ ∀𝑎 ∈ Ons (𝑧 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s))) |
| 5 | | fveq2 6876 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → ( bday
‘𝑎) = ( bday ‘𝑏)) |
| 6 | 5 | eqeq2d 2746 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝑧 = ( bday
‘𝑎) ↔
𝑧 = (
bday ‘𝑏))) |
| 7 | | eleq1 2822 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝑎 ∈ ℕ0s ↔ 𝑏 ∈
ℕ0s)) |
| 8 | 6, 7 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → ((𝑧 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s))) |
| 9 | 8 | cbvralvw 3220 |
. . . . . . . 8
⊢
(∀𝑎 ∈
Ons (𝑧 = ( bday ‘𝑎) → 𝑎 ∈ ℕ0s) ↔
∀𝑏 ∈
Ons (𝑧 = ( bday ‘𝑏) → 𝑏 ∈
ℕ0s)) |
| 10 | 4, 9 | bitrdi 287 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (∀𝑎 ∈ Ons (𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s))) |
| 11 | | eqeq1 2739 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 = ( bday
‘𝑎) ↔
𝑥 = (
bday ‘𝑎))) |
| 12 | 11 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ (𝑥 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s))) |
| 13 | 12 | ralbidv 3163 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (∀𝑎 ∈ Ons (𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ ∀𝑎 ∈ Ons (𝑥 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s))) |
| 14 | | onscutlt 28217 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ Ons →
𝑎 = ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |s ∅)) |
| 15 | 14 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 = ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |s ∅)) |
| 16 | | onssno 28207 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ons ⊆ No
|
| 17 | | simp13 1206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑎 ∈ Ons) |
| 18 | 16, 17 | sselid 3956 |
. . . . . . . . . . . . . . . . . 18
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑎 ∈ No
) |
| 19 | | sltonold 28214 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈
No → {𝑏 ∈
Ons ∣ 𝑏
<s 𝑎} ⊆ ( O
‘( bday ‘𝑎))) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → {𝑏 ∈ Ons ∣ 𝑏 <s 𝑎} ⊆ ( O ‘(
bday ‘𝑎))) |
| 21 | | breq1 5122 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → (𝑏 <s 𝑎 ↔ 𝑥 <s 𝑎)) |
| 22 | | simp2 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑥 ∈ Ons) |
| 23 | | simp3 1138 |
. . . . . . . . . . . . . . . . . 18
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑥 <s 𝑎) |
| 24 | 21, 22, 23 | elrabd 3673 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑥 ∈ {𝑏 ∈ Ons ∣ 𝑏 <s 𝑎}) |
| 25 | 20, 24 | sseldd 3959 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑥 ∈ ( O ‘(
bday ‘𝑎))) |
| 26 | | bdayelon 27740 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑎) ∈ On |
| 27 | 16, 22 | sselid 3956 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑥 ∈ No
) |
| 28 | | oldbday 27864 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑎) ∈ On ∧ 𝑥 ∈ No )
→ (𝑥 ∈ ( O
‘( bday ‘𝑎)) ↔ ( bday
‘𝑥) ∈
( bday ‘𝑎))) |
| 29 | 26, 27, 28 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → (𝑥 ∈ ( O ‘(
bday ‘𝑎))
↔ ( bday ‘𝑥) ∈ ( bday
‘𝑎))) |
| 30 | 25, 29 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → ( bday
‘𝑥) ∈
( bday ‘𝑎)) |
| 31 | | fveq2 6876 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → ( bday
‘𝑏) = ( bday ‘𝑥)) |
| 32 | 31 | eleq1d 2819 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (( bday
‘𝑏) ∈
( bday ‘𝑎) ↔ ( bday
‘𝑥) ∈
( bday ‘𝑎))) |
| 33 | | eleq1 2822 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (𝑏 ∈ ℕ0s ↔ 𝑥 ∈
ℕ0s)) |
| 34 | 32, 33 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑥 → ((( bday
‘𝑏) ∈
( bday ‘𝑎) → 𝑏 ∈ ℕ0s) ↔ (( bday ‘𝑥) ∈ ( bday
‘𝑎) →
𝑥 ∈
ℕ0s))) |
| 35 | | simp12 1205 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s)) |
| 36 | 34, 35, 22 | rspcdva 3602 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → (( bday
‘𝑥) ∈
( bday ‘𝑎) → 𝑥 ∈
ℕ0s)) |
| 37 | 30, 36 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) ∧ 𝑥 ∈ Ons ∧
𝑥 <s 𝑎) → 𝑥 ∈
ℕ0s) |
| 38 | 37 | rabssdv 4050 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆
ℕ0s) |
| 39 | | oldfi 27877 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘𝑎) ∈ ω → ( O ‘( bday ‘𝑎)) ∈ Fin) |
| 40 | 39 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → ( O
‘( bday ‘𝑎)) ∈ Fin) |
| 41 | | onsno 28208 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ Ons →
𝑎 ∈ No ) |
| 42 | 41 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . 15
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 ∈
No ) |
| 43 | | sltonold 28214 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈
No → {𝑥 ∈
Ons ∣ 𝑥
<s 𝑎} ⊆ ( O
‘( bday ‘𝑎))) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ ( O ‘(
bday ‘𝑎))) |
| 45 | 40, 44 | ssfid 9273 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ∈ Fin) |
| 46 | | n0sfincut 28298 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ⊆ ℕ0s ∧ {𝑥 ∈ Ons ∣
𝑥 <s 𝑎} ∈ Fin) → ({𝑥 ∈ Ons ∣ 𝑥 <s 𝑎} |s ∅) ∈
ℕ0s) |
| 47 | 38, 45, 46 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → ({𝑥 ∈ Ons ∣
𝑥 <s 𝑎} |s ∅) ∈
ℕ0s) |
| 48 | 15, 47 | eqeltrd 2834 |
. . . . . . . . . . 11
⊢ ((( bday ‘𝑎) ∈ ω ∧ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) ∧ 𝑎 ∈ Ons) → 𝑎 ∈
ℕ0s) |
| 49 | 48 | 3exp 1119 |
. . . . . . . . . 10
⊢ (( bday ‘𝑎) ∈ ω → (∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → 𝑎 ∈
ℕ0s))) |
| 50 | | eleq1 2822 |
. . . . . . . . . . 11
⊢ (𝑦 = ( bday
‘𝑎) →
(𝑦 ∈ ω ↔
( bday ‘𝑎) ∈ ω)) |
| 51 | | raleq 3302 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ( bday
‘𝑎) →
(∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ ∀𝑧 ∈ ( bday
‘𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s))) |
| 52 | | ralcom 3270 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
( bday ‘𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ ∀𝑏 ∈ Ons ∀𝑧 ∈ (
bday ‘𝑎)(𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s)) |
| 53 | | df-ral 3052 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
( bday ‘𝑎)(𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ ∀𝑧(𝑧 ∈ ( bday
‘𝑎) →
(𝑧 = ( bday ‘𝑏) → 𝑏 ∈
ℕ0s))) |
| 54 | | bi2.04 387 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ (
bday ‘𝑎)
→ (𝑧 = ( bday ‘𝑏) → 𝑏 ∈ ℕ0s)) ↔ (𝑧 = ( bday
‘𝑏) →
(𝑧 ∈ ( bday ‘𝑎) → 𝑏 ∈
ℕ0s))) |
| 55 | 54 | albii 1819 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧(𝑧 ∈ (
bday ‘𝑎)
→ (𝑧 = ( bday ‘𝑏) → 𝑏 ∈ ℕ0s)) ↔
∀𝑧(𝑧 = ( bday
‘𝑏) →
(𝑧 ∈ ( bday ‘𝑎) → 𝑏 ∈
ℕ0s))) |
| 56 | | fvex 6889 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑏) ∈ V |
| 57 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ( bday
‘𝑏) →
(𝑧 ∈ ( bday ‘𝑎) ↔ ( bday
‘𝑏) ∈
( bday ‘𝑎))) |
| 58 | 57 | imbi1d 341 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ( bday
‘𝑏) →
((𝑧 ∈ ( bday ‘𝑎) → 𝑏 ∈ ℕ0s) ↔ (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s))) |
| 59 | 56, 58 | ceqsalv 3500 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧(𝑧 = ( bday
‘𝑏) →
(𝑧 ∈ ( bday ‘𝑎) → 𝑏 ∈ ℕ0s)) ↔ (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s)) |
| 60 | 53, 55, 59 | 3bitri 297 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
( bday ‘𝑎)(𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ (( bday ‘𝑏) ∈ (
bday ‘𝑎)
→ 𝑏 ∈
ℕ0s)) |
| 61 | 60 | ralbii 3082 |
. . . . . . . . . . . . . 14
⊢
(∀𝑏 ∈
Ons ∀𝑧
∈ ( bday ‘𝑎)(𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s)) |
| 62 | 52, 61 | bitri 275 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
( bday ‘𝑎)∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s)) |
| 63 | 51, 62 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑦 = ( bday
‘𝑎) →
(∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) ↔ ∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s))) |
| 64 | 63 | imbi1d 341 |
. . . . . . . . . . 11
⊢ (𝑦 = ( bday
‘𝑎) →
((∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → 𝑎 ∈ ℕ0s))
↔ (∀𝑏 ∈
Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → 𝑎 ∈
ℕ0s)))) |
| 65 | 50, 64 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑦 = ( bday
‘𝑎) →
((𝑦 ∈ ω →
(∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → 𝑎 ∈ ℕ0s)))
↔ (( bday ‘𝑎) ∈ ω → (∀𝑏 ∈ Ons (( bday ‘𝑏) ∈ ( bday
‘𝑎) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → 𝑎 ∈
ℕ0s))))) |
| 66 | 49, 65 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝑦 = ( bday
‘𝑎) →
(𝑦 ∈ ω →
(∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → 𝑎 ∈
ℕ0s)))) |
| 67 | 66 | com4l 92 |
. . . . . . . 8
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) → (𝑎 ∈ Ons → (𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s)))) |
| 68 | 67 | ralrimdv 3138 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ 𝑦 ∀𝑏 ∈ Ons (𝑧 = ( bday
‘𝑏) →
𝑏 ∈
ℕ0s) → ∀𝑎 ∈ Ons (𝑦 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s))) |
| 69 | 10, 13, 68 | omsinds 7882 |
. . . . . 6
⊢ (𝑥 ∈ ω →
∀𝑎 ∈
Ons (𝑥 = ( bday ‘𝑎) → 𝑎 ∈
ℕ0s)) |
| 70 | | fveq2 6876 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ( bday
‘𝑎) = ( bday ‘𝐴)) |
| 71 | 70 | eqeq2d 2746 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑥 = ( bday
‘𝑎) ↔
𝑥 = (
bday ‘𝐴))) |
| 72 | | eleq1 2822 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 ∈ ℕ0s ↔ 𝐴 ∈
ℕ0s)) |
| 73 | 71, 72 | imbi12d 344 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝑥 = ( bday
‘𝑎) →
𝑎 ∈
ℕ0s) ↔ (𝑥 = ( bday
‘𝐴) →
𝐴 ∈
ℕ0s))) |
| 74 | 73 | rspccv 3598 |
. . . . . 6
⊢
(∀𝑎 ∈
Ons (𝑥 = ( bday ‘𝑎) → 𝑎 ∈ ℕ0s) → (𝐴 ∈ Ons →
(𝑥 = ( bday ‘𝐴) → 𝐴 ∈
ℕ0s))) |
| 75 | 69, 74 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ω → (𝐴 ∈ Ons →
(𝑥 = ( bday ‘𝐴) → 𝐴 ∈
ℕ0s))) |
| 76 | 75 | com23 86 |
. . . 4
⊢ (𝑥 ∈ ω → (𝑥 = ( bday
‘𝐴) →
(𝐴 ∈ Ons
→ 𝐴 ∈
ℕ0s))) |
| 77 | 76 | rexlimiv 3134 |
. . 3
⊢
(∃𝑥 ∈
ω 𝑥 = ( bday ‘𝐴) → (𝐴 ∈ Ons → 𝐴 ∈
ℕ0s)) |
| 78 | 1, 77 | sylbi 217 |
. 2
⊢ (( bday ‘𝐴) ∈ ω → (𝐴 ∈ Ons → 𝐴 ∈
ℕ0s)) |
| 79 | 78 | impcom 407 |
1
⊢ ((𝐴 ∈ Ons ∧
( bday ‘𝐴) ∈ ω) → 𝐴 ∈
ℕ0s) |