MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2uz2 Structured version   Visualization version   GIF version

Theorem peano2uz2 12681
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 12633 . . . 4 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
21ad2antrl 728 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝐵 + 1) ∈ ℤ)
3 zre 12592 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 12592 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 lep1 12082 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
65adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1))
7 peano2re 11408 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
87ancli 548 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ))
9 letr 11329 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
1093expb 1120 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
118, 10sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
126, 11mpan2d 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
133, 4, 12syl2an 596 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
1413impr 454 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → 𝐴 ≤ (𝐵 + 1))
152, 14jca 511 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
16 breq2 5123 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
1716elrab 3671 . . 3 (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴𝐵))
1817anbi2i 623 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)))
19 breq2 5123 . . 3 (𝑥 = (𝐵 + 1) → (𝐴𝑥𝐴 ≤ (𝐵 + 1)))
2019elrab 3671 . 2 ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
2115, 18, 203imtr4i 292 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {crab 3415   class class class wbr 5119  (class class class)co 7405  cr 11128  1c1 11130   + caddc 11132  cle 11270  cz 12588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589
This theorem is referenced by:  dfuzi  12684
  Copyright terms: Public domain W3C validator