MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5uzi Structured version   Visualization version   GIF version

Theorem peano5uzi 12059
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
peano5uzi.1 𝑁 ∈ ℤ
Assertion
Ref Expression
peano5uzi ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem peano5uzi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 5034 . . . 4 (𝑘 = 𝑛 → (𝑁𝑘𝑁𝑛))
21elrab 3628 . . 3 (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} ↔ (𝑛 ∈ ℤ ∧ 𝑁𝑛))
3 zcn 11974 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
43ad2antrl 727 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛 ∈ ℂ)
5 peano5uzi.1 . . . . . . . 8 𝑁 ∈ ℤ
6 zcn 11974 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
75, 6ax-mp 5 . . . . . . 7 𝑁 ∈ ℂ
8 ax-1cn 10584 . . . . . . 7 1 ∈ ℂ
97, 8subcli 10951 . . . . . 6 (𝑁 − 1) ∈ ℂ
10 npcan 10884 . . . . . 6 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
114, 9, 10sylancl 589 . . . . 5 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
12 subsub 10905 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
137, 8, 12mp3an23 1450 . . . . . . . 8 (𝑛 ∈ ℂ → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
144, 13syl 17 . . . . . . 7 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
15 znn0sub 12017 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
165, 15mpan 689 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
1716biimpa 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁𝑛) → (𝑛𝑁) ∈ ℕ0)
1817adantl 485 . . . . . . . 8 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛𝑁) ∈ ℕ0)
19 nn0p1nn 11924 . . . . . . . 8 ((𝑛𝑁) ∈ ℕ0 → ((𝑛𝑁) + 1) ∈ ℕ)
2018, 19syl 17 . . . . . . 7 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → ((𝑛𝑁) + 1) ∈ ℕ)
2114, 20eqeltrd 2890 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛 − (𝑁 − 1)) ∈ ℕ)
22 simpl 486 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴))
23 oveq1 7142 . . . . . . . . 9 (𝑘 = 1 → (𝑘 + (𝑁 − 1)) = (1 + (𝑁 − 1)))
2423eleq1d 2874 . . . . . . . 8 (𝑘 = 1 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (1 + (𝑁 − 1)) ∈ 𝐴))
2524imbi2d 344 . . . . . . 7 (𝑘 = 1 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)))
26 oveq1 7142 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 + (𝑁 − 1)) = (𝑛 + (𝑁 − 1)))
2726eleq1d 2874 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (𝑛 + (𝑁 − 1)) ∈ 𝐴))
2827imbi2d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)))
29 oveq1 7142 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (𝑘 + (𝑁 − 1)) = ((𝑛 + 1) + (𝑁 − 1)))
3029eleq1d 2874 . . . . . . . 8 (𝑘 = (𝑛 + 1) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
3130imbi2d 344 . . . . . . 7 (𝑘 = (𝑛 + 1) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
32 oveq1 7142 . . . . . . . . 9 (𝑘 = (𝑛 − (𝑁 − 1)) → (𝑘 + (𝑁 − 1)) = ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)))
3332eleq1d 2874 . . . . . . . 8 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
3433imbi2d 344 . . . . . . 7 (𝑘 = (𝑛 − (𝑁 − 1)) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
358, 7pncan3i 10952 . . . . . . . 8 (1 + (𝑁 − 1)) = 𝑁
36 simpl 486 . . . . . . . 8 ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → 𝑁𝐴)
3735, 36eqeltrid 2894 . . . . . . 7 ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)
38 oveq1 7142 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + (𝑁 − 1)) → (𝑥 + 1) = ((𝑛 + (𝑁 − 1)) + 1))
3938eleq1d 2874 . . . . . . . . . . . 12 (𝑥 = (𝑛 + (𝑁 − 1)) → ((𝑥 + 1) ∈ 𝐴 ↔ ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4039rspccv 3568 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4140ad2antll 728 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
42 nncn 11633 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
4342adantr 484 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℂ)
44 add32 10847 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
459, 8, 44mp3an23 1450 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
4643, 45syl 17 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
4746eleq1d 2874 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
4841, 47sylibd 242 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
4948ex 416 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5049a2d 29 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5125, 28, 31, 34, 37, 50nnind 11643 . . . . . 6 ((𝑛 − (𝑁 − 1)) ∈ ℕ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
5221, 22, 51sylc 65 . . . . 5 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)
5311, 52eqeltrrd 2891 . . . 4 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛𝐴)
5453ex 416 . . 3 ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 ∈ ℤ ∧ 𝑁𝑛) → 𝑛𝐴))
552, 54syl5bi 245 . 2 ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} → 𝑛𝐴))
5655ssrdv 3921 1 ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  wss 3881   class class class wbr 5030  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529  cle 10665  cmin 10859  cn 11625  0cn0 11885  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970
This theorem is referenced by:  peano5uzti  12060  dfuzi  12061
  Copyright terms: Public domain W3C validator