Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
(class class class)co 7426 1c1 11147
+ caddc 11149 ℤcz 12596 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 |
This theorem is referenced by: zleltp1
12651 btwnnz
12676 peano2uz2
12688 uzind
12692 uzind2
12693 peano2zd
12707 eluzp1m1
12886 eluzp1p1
12888 peano2uz
12923 zltaddlt1le
13522 elfzp1b
13618 fzval3
13741 fzossfzop1
13750 zesq
14228 hashfzp1
14430 odd2np1lem
16324 odd2np1
16325 mulsucdiv2z
16337 oddp1d2
16342 zob
16343 ltoddhalfle
16345 fldivp1
16873 telgsumfzs
19951 degltp1le
26029 ppiprm
27103 ppinprm
27104 chtprm
27105 chtnprm
27106 chtub
27165 lgsdir2lem2
27279 poimirlem3
37129 poimirlem4
37130 poimirlem16
37142 poimirlem17
37143 poimirlem19
37145 poimirlem20
37146 itg2addnclem2
37178 fdc
37251 ellz1
42218 rmxluc
42388 rmyluc
42389 jm2.27dlem2
42462 fzopredsuc
46732 icceuelpartlem
46804 oddp1evenALTV
47045 elfzolborelfzop1
47665 dignn0flhalflem1
47766 |