| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2z | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| peano2z | ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12512 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | zaddcl 12522 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ ℤ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℤcz 12479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 |
| This theorem is referenced by: zleltp1 12533 btwnnz 12559 peano2uz2 12571 uzind 12575 uzind2 12576 peano2zd 12590 eluzp1m1 12768 eluzp1p1 12770 peano2uz 12805 zltaddlt1le 13412 elfzp1b 13508 fzval3 13641 fzossfzop1 13650 zesq 14140 hashfzp1 14345 odd2np1lem 16258 odd2np1 16259 mulsucdiv2z 16271 oddp1d2 16276 zob 16277 ltoddhalfle 16279 fldivp1 16816 telgsumfzs 19909 degltp1le 26025 ppiprm 27108 ppinprm 27109 chtprm 27110 chtnprm 27111 chtub 27170 lgsdir2lem2 27284 poimirlem3 37736 poimirlem4 37737 poimirlem16 37749 poimirlem17 37750 poimirlem19 37752 poimirlem20 37753 itg2addnclem2 37785 fdc 37858 eluzp1 42477 ellz1 42924 rmxluc 43093 rmyluc 43094 jm2.27dlem2 43167 fzopredsuc 47485 icceuelpartlem 47597 oddp1evenALTV 47838 elfzolborelfzop1 48681 dignn0flhalflem1 48777 |
| Copyright terms: Public domain | W3C validator |