MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2z Structured version   Visualization version   GIF version

Theorem peano2z 12370
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)

Proof of Theorem peano2z
StepHypRef Expression
1 1z 12359 . 2 1 ∈ ℤ
2 zaddcl 12369 . 2 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
31, 2mpan2 688 1 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  (class class class)co 7284  1c1 10881   + caddc 10883  cz 12328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-n0 12243  df-z 12329
This theorem is referenced by:  zleltp1  12380  btwnnz  12405  peano2uz2  12417  uzind  12421  uzind2  12422  peano2zd  12438  eluzp1m1  12617  eluzp1p1  12619  peano2uz  12650  zltaddlt1le  13246  elfzp1b  13342  fzval3  13465  fzossfzop1  13474  zesq  13950  hashfzp1  14155  odd2np1lem  16058  odd2np1  16059  mulsucdiv2z  16071  oddp1d2  16076  zob  16077  ltoddhalfle  16079  fldivp1  16607  telgsumfzs  19599  degltp1le  25247  ppiprm  26309  ppinprm  26310  chtprm  26311  chtnprm  26312  chtub  26369  lgsdir2lem2  26483  poimirlem3  35789  poimirlem4  35790  poimirlem16  35802  poimirlem17  35803  poimirlem19  35805  poimirlem20  35806  itg2addnclem2  35838  fdc  35912  ellz1  40596  rmxluc  40765  rmyluc  40766  jm2.27dlem2  40839  fzopredsuc  44826  icceuelpartlem  44898  oddp1evenALTV  45139  elfzolborelfzop1  45871  dignn0flhalflem1  45972
  Copyright terms: Public domain W3C validator