| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expscl | Structured version Visualization version GIF version | ||
| Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| expscl | ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ No ⊆ No | |
| 2 | mulscl 28078 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (𝑥 ·s 𝑦) ∈ No ) | |
| 3 | 1sno 27777 | . 2 ⊢ 1s ∈ No | |
| 4 | 1, 2, 3 | expscllem 28358 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7369 No csur 27585 ℕ0scnn0s 28247 ↑scexps 28340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-nadd 8607 df-no 27588 df-slt 27589 df-bday 27590 df-sle 27691 df-sslt 27728 df-scut 27730 df-0s 27774 df-1s 27775 df-made 27793 df-old 27794 df-left 27796 df-right 27797 df-norec 27886 df-norec2 27897 df-adds 27908 df-negs 27968 df-subs 27969 df-muls 28051 df-seqs 28219 df-n0s 28249 df-nns 28250 df-zs 28308 df-exps 28341 |
| This theorem is referenced by: expadds 28363 expsne0 28364 expsgt0 28365 pw2recs 28366 pw2divscld 28367 pw2divsmuld 28368 pw2divscan3d 28369 pw2divscan2d 28370 pw2divsassd 28371 pw2divscan4d 28372 pw2gt0divsd 28373 pw2ge0divsd 28374 pw2divsrecd 28375 pw2divsnegd 28377 pw2sltdivmuld 28378 pw2sltmuldiv2d 28379 pw2cut 28384 zs12addscl 28390 zs12zodd 28395 zs12ge0 28396 zs12bday 28397 |
| Copyright terms: Public domain | W3C validator |