| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expscl | Structured version Visualization version GIF version | ||
| Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| expscl | ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3958 | . 2 ⊢ No ⊆ No | |
| 2 | mulscl 28044 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (𝑥 ·s 𝑦) ∈ No ) | |
| 3 | 1sno 27742 | . 2 ⊢ 1s ∈ No | |
| 4 | 1, 2, 3 | expscllem 28324 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7349 No csur 27549 ℕ0scnn0s 28213 ↑scexps 28306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27739 df-1s 27740 df-made 27759 df-old 27760 df-left 27762 df-right 27763 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-muls 28017 df-seqs 28185 df-n0s 28215 df-nns 28216 df-zs 28274 df-exps 28307 |
| This theorem is referenced by: expadds 28329 expsne0 28330 expsgt0 28331 pw2recs 28332 pw2divscld 28333 pw2divsmuld 28334 pw2divscan3d 28335 pw2divscan2d 28336 pw2divsassd 28337 pw2divscan4d 28338 pw2gt0divsd 28339 pw2ge0divsd 28340 pw2divsrecd 28341 pw2divsnegd 28343 pw2sltdivmuld 28344 pw2sltmuldiv2d 28345 pw2cut 28351 zs12addscl 28358 zs12zodd 28363 zs12ge0 28364 zs12bday 28365 |
| Copyright terms: Public domain | W3C validator |