MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expscl Structured version   Visualization version   GIF version

Theorem expscl 28428
Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expscl ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ No )

Proof of Theorem expscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eleq1d 2824 . . . 4 (𝑚 = 0s → ((𝐴s𝑚) ∈ No ↔ (𝐴s 0s ) ∈ No ))
32imbi2d 340 . . 3 (𝑚 = 0s → ((𝐴 No → (𝐴s𝑚) ∈ No ) ↔ (𝐴 No → (𝐴s 0s ) ∈ No )))
4 oveq2 7439 . . . . 5 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54eleq1d 2824 . . . 4 (𝑚 = 𝑛 → ((𝐴s𝑚) ∈ No ↔ (𝐴s𝑛) ∈ No ))
65imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝐴 No → (𝐴s𝑚) ∈ No ) ↔ (𝐴 No → (𝐴s𝑛) ∈ No )))
7 oveq2 7439 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87eleq1d 2824 . . . 4 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) ∈ No ↔ (𝐴s(𝑛 +s 1s )) ∈ No ))
98imbi2d 340 . . 3 (𝑚 = (𝑛 +s 1s ) → ((𝐴 No → (𝐴s𝑚) ∈ No ) ↔ (𝐴 No → (𝐴s(𝑛 +s 1s )) ∈ No )))
10 oveq2 7439 . . . . 5 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110eleq1d 2824 . . . 4 (𝑚 = 𝑁 → ((𝐴s𝑚) ∈ No ↔ (𝐴s𝑁) ∈ No ))
1211imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝐴 No → (𝐴s𝑚) ∈ No ) ↔ (𝐴 No → (𝐴s𝑁) ∈ No )))
13 exps0 28425 . . . 4 (𝐴 No → (𝐴s 0s ) = 1s )
14 1sno 27887 . . . 4 1s No
1513, 14eqeltrdi 2847 . . 3 (𝐴 No → (𝐴s 0s ) ∈ No )
16 simp2 1136 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 No ∧ (𝐴s𝑛) ∈ No ) → 𝐴 No )
17 simp1 1135 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 No ∧ (𝐴s𝑛) ∈ No ) → 𝑛 ∈ ℕ0s)
18 expsp1 28427 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
1916, 17, 18syl2anc 584 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴 No ∧ (𝐴s𝑛) ∈ No ) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
20 simp3 1137 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 No ∧ (𝐴s𝑛) ∈ No ) → (𝐴s𝑛) ∈ No )
2120, 16mulscld 28176 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴 No ∧ (𝐴s𝑛) ∈ No ) → ((𝐴s𝑛) ·s 𝐴) ∈ No )
2219, 21eqeltrd 2839 . . . . 5 ((𝑛 ∈ ℕ0s𝐴 No ∧ (𝐴s𝑛) ∈ No ) → (𝐴s(𝑛 +s 1s )) ∈ No )
23223exp 1118 . . . 4 (𝑛 ∈ ℕ0s → (𝐴 No → ((𝐴s𝑛) ∈ No → (𝐴s(𝑛 +s 1s )) ∈ No )))
2423a2d 29 . . 3 (𝑛 ∈ ℕ0s → ((𝐴 No → (𝐴s𝑛) ∈ No ) → (𝐴 No → (𝐴s(𝑛 +s 1s )) ∈ No )))
253, 6, 9, 12, 15, 24n0sind 28352 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → (𝐴s𝑁) ∈ No ))
2625impcom 407 1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431   No csur 27699   0s c0s 27882   1s c1s 27883   +s cadds 28007   ·s cmuls 28147  0scnn0s 28333  scexps 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-seqs 28305  df-n0s 28335  df-nns 28336  df-zs 28380  df-exps 28412
This theorem is referenced by:  expsne0  28429  expsgt0  28430  cutpw2  28432  pw2bday  28433  pw2cut  28435  zs12bday  28439
  Copyright terms: Public domain W3C validator