| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expscl | Structured version Visualization version GIF version | ||
| Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| expscl | ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ No ⊆ No | |
| 2 | mulscl 28073 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (𝑥 ·s 𝑦) ∈ No ) | |
| 3 | 1sno 27771 | . 2 ⊢ 1s ∈ No | |
| 4 | 1, 2, 3 | expscllem 28353 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7346 No csur 27578 ℕ0scnn0s 28242 ↑scexps 28335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 df-muls 28046 df-seqs 28214 df-n0s 28244 df-nns 28245 df-zs 28303 df-exps 28336 |
| This theorem is referenced by: expadds 28358 expsne0 28359 expsgt0 28360 pw2recs 28361 pw2divscld 28362 pw2divsmuld 28363 pw2divscan3d 28364 pw2divscan2d 28365 pw2divsassd 28366 pw2divscan4d 28367 pw2gt0divsd 28368 pw2ge0divsd 28369 pw2divsrecd 28370 pw2divsnegd 28372 pw2sltdivmuld 28373 pw2sltmuldiv2d 28374 pw2cut 28380 zs12addscl 28387 zs12zodd 28392 zs12ge0 28393 zs12bday 28394 |
| Copyright terms: Public domain | W3C validator |