MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsupss Structured version   Visualization version   GIF version

Theorem uzsupss 12961
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
uzsupss.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsupss ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑀,𝑦   𝑥,𝑍
Allowed substitution hints:   𝑀(𝑧)   𝑍(𝑦,𝑧)

Proof of Theorem uzsupss
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ ℤ)
2 uzid 12872 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ (ℤ𝑀))
4 uzsupss.1 . . . 4 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2846 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀𝑍)
6 ral0 4493 . . . 4 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦
7 simpr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝐴 = ∅)
87raleqdv 3309 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑀 < 𝑦))
96, 8mpbiri 258 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝐴 ¬ 𝑀 < 𝑦)
10 eluzle 12870 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → 𝑀𝑦)
11 eluzel2 12862 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
12 eluzelz 12867 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
13 zre 12597 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14 zre 12597 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
15 lenlt 11318 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1613, 14, 15syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1711, 12, 16syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1810, 17mpbid 232 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → ¬ 𝑦 < 𝑀)
1918, 4eleq2s 2853 . . . . . 6 (𝑦𝑍 → ¬ 𝑦 < 𝑀)
2019pm2.21d 121 . . . . 5 (𝑦𝑍 → (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
2120rgen 3054 . . . 4 𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)
2221a1i 11 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
23 breq1 5127 . . . . . . 7 (𝑥 = 𝑀 → (𝑥 < 𝑦𝑀 < 𝑦))
2423notbid 318 . . . . . 6 (𝑥 = 𝑀 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦))
2524ralbidv 3164 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑀 < 𝑦))
26 breq2 5128 . . . . . . 7 (𝑥 = 𝑀 → (𝑦 < 𝑥𝑦 < 𝑀))
2726imbi1d 341 . . . . . 6 (𝑥 = 𝑀 → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2827ralbidv 3164 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2925, 28anbi12d 632 . . . 4 (𝑥 = 𝑀 → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))))
3029rspcev 3606 . . 3 ((𝑀𝑍 ∧ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
315, 9, 22, 30syl12anc 836 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
32 simpl2 1193 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴𝑍)
33 uzssz 12878 . . . . . 6 (ℤ𝑀) ⊆ ℤ
344, 33eqsstri 4010 . . . . 5 𝑍 ⊆ ℤ
3532, 34sstrdi 3976 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℤ)
36 simpr 484 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
37 simpl3 1194 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
38 zsupss 12958 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3935, 36, 37, 38syl3anc 1373 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
40 ssrexv 4033 . . 3 (𝐴𝑍 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4132, 39, 40sylc 65 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4231, 41pm2.61dane 3020 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  cfv 6536  cr 11133   < clt 11274  cle 11275  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  dgrcl  26195  dgrub  26196  dgrlb  26198  oddpwdc  34391
  Copyright terms: Public domain W3C validator