MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsupss Structured version   Visualization version   GIF version

Theorem uzsupss 12911
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
uzsupss.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsupss ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑀,𝑦   𝑥,𝑍
Allowed substitution hints:   𝑀(𝑧)   𝑍(𝑦,𝑧)

Proof of Theorem uzsupss
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ ℤ)
2 uzid 12824 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ (ℤ𝑀))
4 uzsupss.1 . . . 4 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2845 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀𝑍)
6 ral0 4508 . . . 4 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦
7 simpr 486 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝐴 = ∅)
87raleqdv 3326 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑀 < 𝑦))
96, 8mpbiri 258 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝐴 ¬ 𝑀 < 𝑦)
10 eluzle 12822 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → 𝑀𝑦)
11 eluzel2 12814 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
12 eluzelz 12819 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
13 zre 12549 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14 zre 12549 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
15 lenlt 11279 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1613, 14, 15syl2an 597 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1711, 12, 16syl2anc 585 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1810, 17mpbid 231 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → ¬ 𝑦 < 𝑀)
1918, 4eleq2s 2852 . . . . . 6 (𝑦𝑍 → ¬ 𝑦 < 𝑀)
2019pm2.21d 121 . . . . 5 (𝑦𝑍 → (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
2120rgen 3064 . . . 4 𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)
2221a1i 11 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
23 breq1 5147 . . . . . . 7 (𝑥 = 𝑀 → (𝑥 < 𝑦𝑀 < 𝑦))
2423notbid 318 . . . . . 6 (𝑥 = 𝑀 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦))
2524ralbidv 3178 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑀 < 𝑦))
26 breq2 5148 . . . . . . 7 (𝑥 = 𝑀 → (𝑦 < 𝑥𝑦 < 𝑀))
2726imbi1d 342 . . . . . 6 (𝑥 = 𝑀 → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2827ralbidv 3178 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2925, 28anbi12d 632 . . . 4 (𝑥 = 𝑀 → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))))
3029rspcev 3611 . . 3 ((𝑀𝑍 ∧ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
315, 9, 22, 30syl12anc 836 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
32 simpl2 1193 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴𝑍)
33 uzssz 12830 . . . . . 6 (ℤ𝑀) ⊆ ℤ
344, 33eqsstri 4014 . . . . 5 𝑍 ⊆ ℤ
3532, 34sstrdi 3992 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℤ)
36 simpr 486 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
37 simpl3 1194 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
38 zsupss 12908 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3935, 36, 37, 38syl3anc 1372 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
40 ssrexv 4049 . . 3 (𝐴𝑍 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4132, 39, 40sylc 65 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4231, 41pm2.61dane 3030 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3946  c0 4320   class class class wbr 5144  cfv 6535  cr 11096   < clt 11235  cle 11236  cz 12545  cuz 12809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-sup 9424  df-inf 9425  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-n0 12460  df-z 12546  df-uz 12810
This theorem is referenced by:  dgrcl  25716  dgrub  25717  dgrlb  25719  oddpwdc  33284
  Copyright terms: Public domain W3C validator