MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsupss Structured version   Visualization version   GIF version

Theorem uzsupss 12680
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
uzsupss.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsupss ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑀,𝑦   𝑥,𝑍
Allowed substitution hints:   𝑀(𝑧)   𝑍(𝑦,𝑧)

Proof of Theorem uzsupss
StepHypRef Expression
1 simpl1 1190 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ ℤ)
2 uzid 12597 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ (ℤ𝑀))
4 uzsupss.1 . . . 4 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2850 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀𝑍)
6 ral0 4443 . . . 4 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦
7 simpr 485 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝐴 = ∅)
87raleqdv 3348 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑀 < 𝑦))
96, 8mpbiri 257 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝐴 ¬ 𝑀 < 𝑦)
10 eluzle 12595 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → 𝑀𝑦)
11 eluzel2 12587 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
12 eluzelz 12592 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
13 zre 12323 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14 zre 12323 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
15 lenlt 11053 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1613, 14, 15syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1711, 12, 16syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1810, 17mpbid 231 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → ¬ 𝑦 < 𝑀)
1918, 4eleq2s 2857 . . . . . 6 (𝑦𝑍 → ¬ 𝑦 < 𝑀)
2019pm2.21d 121 . . . . 5 (𝑦𝑍 → (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
2120rgen 3074 . . . 4 𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)
2221a1i 11 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
23 breq1 5077 . . . . . . 7 (𝑥 = 𝑀 → (𝑥 < 𝑦𝑀 < 𝑦))
2423notbid 318 . . . . . 6 (𝑥 = 𝑀 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦))
2524ralbidv 3112 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑀 < 𝑦))
26 breq2 5078 . . . . . . 7 (𝑥 = 𝑀 → (𝑦 < 𝑥𝑦 < 𝑀))
2726imbi1d 342 . . . . . 6 (𝑥 = 𝑀 → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2827ralbidv 3112 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2925, 28anbi12d 631 . . . 4 (𝑥 = 𝑀 → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))))
3029rspcev 3561 . . 3 ((𝑀𝑍 ∧ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
315, 9, 22, 30syl12anc 834 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
32 simpl2 1191 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴𝑍)
33 uzssz 12603 . . . . . 6 (ℤ𝑀) ⊆ ℤ
344, 33eqsstri 3955 . . . . 5 𝑍 ⊆ ℤ
3532, 34sstrdi 3933 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℤ)
36 simpr 485 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
37 simpl3 1192 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
38 zsupss 12677 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3935, 36, 37, 38syl3anc 1370 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
40 ssrexv 3988 . . 3 (𝐴𝑍 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4132, 39, 40sylc 65 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4231, 41pm2.61dane 3032 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  cfv 6433  cr 10870   < clt 11009  cle 11010  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  dgrcl  25394  dgrub  25395  dgrlb  25397  oddpwdc  32321
  Copyright terms: Public domain W3C validator