MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsupss Structured version   Visualization version   GIF version

Theorem uzsupss 12899
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
uzsupss.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsupss ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑀,𝑦   𝑥,𝑍
Allowed substitution hints:   𝑀(𝑧)   𝑍(𝑦,𝑧)

Proof of Theorem uzsupss
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ ℤ)
2 uzid 12808 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ (ℤ𝑀))
4 uzsupss.1 . . . 4 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2839 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀𝑍)
6 ral0 4476 . . . 4 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦
7 simpr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝐴 = ∅)
87raleqdv 3299 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑀 < 𝑦))
96, 8mpbiri 258 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝐴 ¬ 𝑀 < 𝑦)
10 eluzle 12806 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → 𝑀𝑦)
11 eluzel2 12798 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
12 eluzelz 12803 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
13 zre 12533 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14 zre 12533 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
15 lenlt 11252 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1613, 14, 15syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1711, 12, 16syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1810, 17mpbid 232 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → ¬ 𝑦 < 𝑀)
1918, 4eleq2s 2846 . . . . . 6 (𝑦𝑍 → ¬ 𝑦 < 𝑀)
2019pm2.21d 121 . . . . 5 (𝑦𝑍 → (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
2120rgen 3046 . . . 4 𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)
2221a1i 11 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
23 breq1 5110 . . . . . . 7 (𝑥 = 𝑀 → (𝑥 < 𝑦𝑀 < 𝑦))
2423notbid 318 . . . . . 6 (𝑥 = 𝑀 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦))
2524ralbidv 3156 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑀 < 𝑦))
26 breq2 5111 . . . . . . 7 (𝑥 = 𝑀 → (𝑦 < 𝑥𝑦 < 𝑀))
2726imbi1d 341 . . . . . 6 (𝑥 = 𝑀 → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2827ralbidv 3156 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2925, 28anbi12d 632 . . . 4 (𝑥 = 𝑀 → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))))
3029rspcev 3588 . . 3 ((𝑀𝑍 ∧ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
315, 9, 22, 30syl12anc 836 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
32 simpl2 1193 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴𝑍)
33 uzssz 12814 . . . . . 6 (ℤ𝑀) ⊆ ℤ
344, 33eqsstri 3993 . . . . 5 𝑍 ⊆ ℤ
3532, 34sstrdi 3959 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℤ)
36 simpr 484 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
37 simpl3 1194 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
38 zsupss 12896 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3935, 36, 37, 38syl3anc 1373 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
40 ssrexv 4016 . . 3 (𝐴𝑍 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4132, 39, 40sylc 65 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4231, 41pm2.61dane 3012 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  cr 11067   < clt 11208  cle 11209  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by:  dgrcl  26138  dgrub  26139  dgrlb  26141  oddpwdc  34345
  Copyright terms: Public domain W3C validator