| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ewlk | Structured version Visualization version GIF version | ||
| Description: The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021.) |
| Ref | Expression |
|---|---|
| 0ewlk | ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 14562 | . . 3 ⊢ ∅ ∈ Word dom (iEdg‘𝐺) | |
| 2 | ral0 4493 | . . . 4 ⊢ ∀𝑘 ∈ ∅ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) | |
| 3 | hash0 14390 | . . . . . . 7 ⊢ (♯‘∅) = 0 | |
| 4 | 3 | oveq2i 7421 | . . . . . 6 ⊢ (1..^(♯‘∅)) = (1..^0) |
| 5 | 0le1 11765 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 6 | 1z 12627 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 7 | 0z 12604 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 8 | fzon 13702 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅)) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . . . 7 ⊢ (0 ≤ 1 ↔ (1..^0) = ∅) |
| 10 | 5, 9 | mpbi 230 | . . . . . 6 ⊢ (1..^0) = ∅ |
| 11 | 4, 10 | eqtri 2759 | . . . . 5 ⊢ (1..^(♯‘∅)) = ∅ |
| 12 | 11 | raleqi 3307 | . . . 4 ⊢ (∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ∀𝑘 ∈ ∅ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
| 13 | 2, 12 | mpbir 231 | . . 3 ⊢ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) |
| 14 | 1, 13 | pm3.2i 470 | . 2 ⊢ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
| 15 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 16 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 17 | 16 | isewlk 29587 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ ∅ ∈ V) → (∅ ∈ (𝐺 EdgWalks 𝑆) ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))))) |
| 18 | 15, 17 | mp3an3 1452 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (∅ ∈ (𝐺 EdgWalks 𝑆) ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))))) |
| 19 | 14, 18 | mpbiri 258 | 1 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cin 3930 ∅c0 4313 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 ≤ cle 11275 − cmin 11471 ℕ0*cxnn0 12579 ℤcz 12593 ..^cfzo 13676 ♯chash 14353 Word cword 14536 iEdgciedg 28981 EdgWalks cewlks 29580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-ewlks 29583 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |