![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ewlk | Structured version Visualization version GIF version |
Description: The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021.) |
Ref | Expression |
---|---|
0ewlk | ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd0 14515 | . . 3 ⊢ ∅ ∈ Word dom (iEdg‘𝐺) | |
2 | ral0 4508 | . . . 4 ⊢ ∀𝑘 ∈ ∅ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) | |
3 | hash0 14352 | . . . . . . 7 ⊢ (♯‘∅) = 0 | |
4 | 3 | oveq2i 7425 | . . . . . 6 ⊢ (1..^(♯‘∅)) = (1..^0) |
5 | 0le1 11761 | . . . . . . 7 ⊢ 0 ≤ 1 | |
6 | 1z 12616 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
7 | 0z 12593 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
8 | fzon 13679 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅)) | |
9 | 6, 7, 8 | mp2an 691 | . . . . . . 7 ⊢ (0 ≤ 1 ↔ (1..^0) = ∅) |
10 | 5, 9 | mpbi 229 | . . . . . 6 ⊢ (1..^0) = ∅ |
11 | 4, 10 | eqtri 2755 | . . . . 5 ⊢ (1..^(♯‘∅)) = ∅ |
12 | 11 | raleqi 3318 | . . . 4 ⊢ (∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ∀𝑘 ∈ ∅ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
13 | 2, 12 | mpbir 230 | . . 3 ⊢ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) |
14 | 1, 13 | pm3.2i 470 | . 2 ⊢ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
15 | 0ex 5301 | . . 3 ⊢ ∅ ∈ V | |
16 | eqid 2727 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
17 | 16 | isewlk 29409 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ ∅ ∈ V) → (∅ ∈ (𝐺 EdgWalks 𝑆) ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))))) |
18 | 15, 17 | mp3an3 1447 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (∅ ∈ (𝐺 EdgWalks 𝑆) ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘∅))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))))) |
19 | 14, 18 | mpbiri 258 | 1 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ∩ cin 3943 ∅c0 4318 class class class wbr 5142 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 ≤ cle 11273 − cmin 11468 ℕ0*cxnn0 12568 ℤcz 12582 ..^cfzo 13653 ♯chash 14315 Word cword 14490 iEdgciedg 28803 EdgWalks cewlks 29402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 df-ewlks 29405 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |