Step | Hyp | Ref
| Expression |
1 | | fperiodmul.f |
. . . 4
β’ (π β πΉ:ββΆβ) |
2 | 1 | adantr 480 |
. . 3
β’ ((π β§ π β β0) β πΉ:ββΆβ) |
3 | | fperiodmul.t |
. . . 4
β’ (π β π β β) |
4 | 3 | adantr 480 |
. . 3
β’ ((π β§ π β β0) β π β
β) |
5 | | simpr 484 |
. . 3
β’ ((π β§ π β β0) β π β
β0) |
6 | | fperiodmul.x |
. . . 4
β’ (π β π β β) |
7 | 6 | adantr 480 |
. . 3
β’ ((π β§ π β β0) β π β
β) |
8 | | fperiodmul.per |
. . . 4
β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
9 | 8 | adantlr 712 |
. . 3
β’ (((π β§ π β β0) β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
10 | 2, 4, 5, 7, 9 | fperiodmullem 44313 |
. 2
β’ ((π β§ π β β0) β (πΉβ(π + (π Β· π))) = (πΉβπ)) |
11 | 6 | recnd 11247 |
. . . . . . 7
β’ (π β π β β) |
12 | | fperiodmul.n |
. . . . . . . . 9
β’ (π β π β β€) |
13 | 12 | zcnd 12672 |
. . . . . . . 8
β’ (π β π β β) |
14 | 3 | recnd 11247 |
. . . . . . . 8
β’ (π β π β β) |
15 | 13, 14 | mulcld 11239 |
. . . . . . 7
β’ (π β (π Β· π) β β) |
16 | 11, 15 | subnegd 11583 |
. . . . . 6
β’ (π β (π β -(π Β· π)) = (π + (π Β· π))) |
17 | 13, 14 | mulneg1d 11672 |
. . . . . . . 8
β’ (π β (-π Β· π) = -(π Β· π)) |
18 | 17 | eqcomd 2737 |
. . . . . . 7
β’ (π β -(π Β· π) = (-π Β· π)) |
19 | 18 | oveq2d 7428 |
. . . . . 6
β’ (π β (π β -(π Β· π)) = (π β (-π Β· π))) |
20 | 16, 19 | eqtr3d 2773 |
. . . . 5
β’ (π β (π + (π Β· π)) = (π β (-π Β· π))) |
21 | 20 | fveq2d 6896 |
. . . 4
β’ (π β (πΉβ(π + (π Β· π))) = (πΉβ(π β (-π Β· π)))) |
22 | 21 | adantr 480 |
. . 3
β’ ((π β§ Β¬ π β β0) β (πΉβ(π + (π Β· π))) = (πΉβ(π β (-π Β· π)))) |
23 | 1 | adantr 480 |
. . . 4
β’ ((π β§ Β¬ π β β0) β πΉ:ββΆβ) |
24 | 3 | adantr 480 |
. . . 4
β’ ((π β§ Β¬ π β β0) β π β
β) |
25 | | znnn0nn 12678 |
. . . . . 6
β’ ((π β β€ β§ Β¬
π β
β0) β -π β β) |
26 | 12, 25 | sylan 579 |
. . . . 5
β’ ((π β§ Β¬ π β β0) β -π β
β) |
27 | 26 | nnnn0d 12537 |
. . . 4
β’ ((π β§ Β¬ π β β0) β -π β
β0) |
28 | 6 | adantr 480 |
. . . . 5
β’ ((π β§ Β¬ π β β0) β π β
β) |
29 | 12 | adantr 480 |
. . . . . . . 8
β’ ((π β§ Β¬ π β β0) β π β
β€) |
30 | 29 | zred 12671 |
. . . . . . 7
β’ ((π β§ Β¬ π β β0) β π β
β) |
31 | 30 | renegcld 11646 |
. . . . . 6
β’ ((π β§ Β¬ π β β0) β -π β
β) |
32 | 31, 24 | remulcld 11249 |
. . . . 5
β’ ((π β§ Β¬ π β β0) β (-π Β· π) β β) |
33 | 28, 32 | resubcld 11647 |
. . . 4
β’ ((π β§ Β¬ π β β0) β (π β (-π Β· π)) β β) |
34 | 8 | adantlr 712 |
. . . 4
β’ (((π β§ Β¬ π β β0) β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
35 | 23, 24, 27, 33, 34 | fperiodmullem 44313 |
. . 3
β’ ((π β§ Β¬ π β β0) β (πΉβ((π β (-π Β· π)) + (-π Β· π))) = (πΉβ(π β (-π Β· π)))) |
36 | 28 | recnd 11247 |
. . . . 5
β’ ((π β§ Β¬ π β β0) β π β
β) |
37 | 30 | recnd 11247 |
. . . . . . 7
β’ ((π β§ Β¬ π β β0) β π β
β) |
38 | 37 | negcld 11563 |
. . . . . 6
β’ ((π β§ Β¬ π β β0) β -π β
β) |
39 | 24 | recnd 11247 |
. . . . . 6
β’ ((π β§ Β¬ π β β0) β π β
β) |
40 | 38, 39 | mulcld 11239 |
. . . . 5
β’ ((π β§ Β¬ π β β0) β (-π Β· π) β β) |
41 | 36, 40 | npcand 11580 |
. . . 4
β’ ((π β§ Β¬ π β β0) β ((π β (-π Β· π)) + (-π Β· π)) = π) |
42 | 41 | fveq2d 6896 |
. . 3
β’ ((π β§ Β¬ π β β0) β (πΉβ((π β (-π Β· π)) + (-π Β· π))) = (πΉβπ)) |
43 | 22, 35, 42 | 3eqtr2d 2777 |
. 2
β’ ((π β§ Β¬ π β β0) β (πΉβ(π + (π Β· π))) = (πΉβπ)) |
44 | 10, 43 | pm2.61dan 810 |
1
β’ (π β (πΉβ(π + (π Β· π))) = (πΉβπ)) |