Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmul Structured version   Visualization version   GIF version

Theorem fperiodmul 45219
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmul.f (𝜑𝐹:ℝ⟶ℂ)
fperiodmul.t (𝜑𝑇 ∈ ℝ)
fperiodmul.n (𝜑𝑁 ∈ ℤ)
fperiodmul.x (𝜑𝑋 ∈ ℝ)
fperiodmul.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
Assertion
Ref Expression
fperiodmul (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝑥,𝑇   𝑥,𝑋   𝜑,𝑥

Proof of Theorem fperiodmul
StepHypRef Expression
1 fperiodmul.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
21adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
3 fperiodmul.t . . . 4 (𝜑𝑇 ∈ ℝ)
43adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
5 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 fperiodmul.x . . . 4 (𝜑𝑋 ∈ ℝ)
76adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
8 fperiodmul.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
98adantlr 714 . . 3 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
102, 4, 5, 7, 9fperiodmullem 45218 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
116recnd 11318 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
12 fperiodmul.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312zcnd 12748 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
143recnd 11318 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
1513, 14mulcld 11310 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ ℂ)
1611, 15subnegd 11654 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇)))
1713, 14mulneg1d 11743 . . . . . . . 8 (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇))
1817eqcomd 2746 . . . . . . 7 (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇))
1918oveq2d 7464 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2016, 19eqtr3d 2782 . . . . 5 (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2120fveq2d 6924 . . . 4 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
2221adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
231adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
243adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
25 znnn0nn 12754 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2612, 25sylan 579 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2726nnnn0d 12613 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
286adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
2912adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3029zred 12747 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3130renegcld 11717 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ)
3231, 24remulcld 11320 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ)
3328, 32resubcld 11718 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ)
348adantlr 714 . . . 4 (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
3523, 24, 27, 33, 34fperiodmullem 45218 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
3628recnd 11318 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ)
3730recnd 11318 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3837negcld 11634 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ)
3924recnd 11318 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ)
4038, 39mulcld 11310 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ)
4136, 40npcand 11651 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋)
4241fveq2d 6924 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹𝑋))
4322, 35, 423eqtr2d 2786 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
4410, 43pm2.61dan 812 1 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  cn 12293  0cn0 12553  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640
This theorem is referenced by:  fourierdlem89  46116  fourierdlem90  46117  fourierdlem91  46118  fourierdlem94  46121  fourierdlem97  46124  fourierdlem113  46140
  Copyright terms: Public domain W3C validator