| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fperiodmul | Structured version Visualization version GIF version | ||
| Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fperiodmul.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| fperiodmul.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| fperiodmul.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fperiodmul.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fperiodmul.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| fperiodmul | ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fperiodmul.f | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
| 3 | fperiodmul.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 6 | fperiodmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
| 8 | fperiodmul.per | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 9 | 8 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 10 | 2, 4, 5, 7, 9 | fperiodmullem 45301 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| 11 | 6 | recnd 11202 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | fperiodmul.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 13 | 12 | zcnd 12639 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 14 | 3 | recnd 11202 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 15 | 13, 14 | mulcld 11194 | . . . . . . 7 ⊢ (𝜑 → (𝑁 · 𝑇) ∈ ℂ) |
| 16 | 11, 15 | subnegd 11540 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇))) |
| 17 | 13, 14 | mulneg1d 11631 | . . . . . . . 8 ⊢ (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇)) |
| 18 | 17 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇)) |
| 19 | 18 | oveq2d 7403 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
| 20 | 16, 19 | eqtr3d 2766 | . . . . 5 ⊢ (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
| 21 | 20 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
| 23 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
| 24 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
| 25 | znnn0nn 12645 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | |
| 26 | 12, 25 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) |
| 27 | 26 | nnnn0d 12503 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0) |
| 28 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
| 29 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 30 | 29 | zred 12638 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 31 | 30 | renegcld 11605 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ) |
| 32 | 31, 24 | remulcld 11204 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ) |
| 33 | 28, 32 | resubcld 11606 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ) |
| 34 | 8 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 35 | 23, 24, 27, 33, 34 | fperiodmullem 45301 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
| 36 | 28 | recnd 11202 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) |
| 37 | 30 | recnd 11202 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 38 | 37 | negcld 11520 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ) |
| 39 | 24 | recnd 11202 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ) |
| 40 | 38, 39 | mulcld 11194 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ) |
| 41 | 36, 40 | npcand 11537 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋) |
| 42 | 41 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| 43 | 22, 35, 42 | 3eqtr2d 2770 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| 44 | 10, 43 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 + caddc 11071 · cmul 11073 − cmin 11405 -cneg 11406 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 |
| This theorem is referenced by: fourierdlem89 46193 fourierdlem90 46194 fourierdlem91 46195 fourierdlem94 46198 fourierdlem97 46201 fourierdlem113 46217 |
| Copyright terms: Public domain | W3C validator |