Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmul Structured version   Visualization version   GIF version

Theorem fperiodmul 45289
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmul.f (𝜑𝐹:ℝ⟶ℂ)
fperiodmul.t (𝜑𝑇 ∈ ℝ)
fperiodmul.n (𝜑𝑁 ∈ ℤ)
fperiodmul.x (𝜑𝑋 ∈ ℝ)
fperiodmul.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
Assertion
Ref Expression
fperiodmul (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝑥,𝑇   𝑥,𝑋   𝜑,𝑥

Proof of Theorem fperiodmul
StepHypRef Expression
1 fperiodmul.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
21adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
3 fperiodmul.t . . . 4 (𝜑𝑇 ∈ ℝ)
43adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
5 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 fperiodmul.x . . . 4 (𝜑𝑋 ∈ ℝ)
76adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
8 fperiodmul.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
98adantlr 715 . . 3 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
102, 4, 5, 7, 9fperiodmullem 45288 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
116recnd 11162 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
12 fperiodmul.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312zcnd 12599 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
143recnd 11162 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
1513, 14mulcld 11154 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ ℂ)
1611, 15subnegd 11500 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇)))
1713, 14mulneg1d 11591 . . . . . . . 8 (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇))
1817eqcomd 2735 . . . . . . 7 (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇))
1918oveq2d 7369 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2016, 19eqtr3d 2766 . . . . 5 (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2120fveq2d 6830 . . . 4 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
2221adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
231adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
243adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
25 znnn0nn 12605 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2612, 25sylan 580 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2726nnnn0d 12463 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
286adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
2912adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3029zred 12598 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3130renegcld 11565 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ)
3231, 24remulcld 11164 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ)
3328, 32resubcld 11566 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ)
348adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
3523, 24, 27, 33, 34fperiodmullem 45288 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
3628recnd 11162 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ)
3730recnd 11162 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3837negcld 11480 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ)
3924recnd 11162 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ)
4038, 39mulcld 11154 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ)
4136, 40npcand 11497 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋)
4241fveq2d 6830 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹𝑋))
4322, 35, 423eqtr2d 2770 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
4410, 43pm2.61dan 812 1 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366  cn 12146  0cn0 12402  cz 12489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490
This theorem is referenced by:  fourierdlem89  46180  fourierdlem90  46181  fourierdlem91  46182  fourierdlem94  46185  fourierdlem97  46188  fourierdlem113  46204
  Copyright terms: Public domain W3C validator