Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fperiodmul | Structured version Visualization version GIF version |
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fperiodmul.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
fperiodmul.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
fperiodmul.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fperiodmul.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fperiodmul.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
Ref | Expression |
---|---|
fperiodmul | ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fperiodmul.f | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
3 | fperiodmul.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
6 | fperiodmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
8 | fperiodmul.per | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
9 | 8 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
10 | 2, 4, 5, 7, 9 | fperiodmullem 42732 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
11 | 6 | recnd 10934 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | fperiodmul.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
13 | 12 | zcnd 12356 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
14 | 3 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
15 | 13, 14 | mulcld 10926 | . . . . . . 7 ⊢ (𝜑 → (𝑁 · 𝑇) ∈ ℂ) |
16 | 11, 15 | subnegd 11269 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇))) |
17 | 13, 14 | mulneg1d 11358 | . . . . . . . 8 ⊢ (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇)) |
18 | 17 | eqcomd 2744 | . . . . . . 7 ⊢ (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇)) |
19 | 18 | oveq2d 7271 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
20 | 16, 19 | eqtr3d 2780 | . . . . 5 ⊢ (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
21 | 20 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
23 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
24 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
25 | znnn0nn 12362 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | |
26 | 12, 25 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) |
27 | 26 | nnnn0d 12223 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0) |
28 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
29 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
30 | 29 | zred 12355 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
31 | 30 | renegcld 11332 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ) |
32 | 31, 24 | remulcld 10936 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ) |
33 | 28, 32 | resubcld 11333 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ) |
34 | 8 | adantlr 711 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
35 | 23, 24, 27, 33, 34 | fperiodmullem 42732 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
36 | 28 | recnd 10934 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) |
37 | 30 | recnd 10934 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
38 | 37 | negcld 11249 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ) |
39 | 24 | recnd 10934 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ) |
40 | 38, 39 | mulcld 10926 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ) |
41 | 36, 40 | npcand 11266 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋) |
42 | 41 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘𝑋)) |
43 | 22, 35, 42 | 3eqtr2d 2784 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
44 | 10, 43 | pm2.61dan 809 | 1 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 |
This theorem is referenced by: fourierdlem89 43626 fourierdlem90 43627 fourierdlem91 43628 fourierdlem94 43631 fourierdlem97 43634 fourierdlem113 43650 |
Copyright terms: Public domain | W3C validator |