| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fperiodmul | Structured version Visualization version GIF version | ||
| Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fperiodmul.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| fperiodmul.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| fperiodmul.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fperiodmul.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fperiodmul.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| fperiodmul | ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fperiodmul.f | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
| 3 | fperiodmul.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 6 | fperiodmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
| 8 | fperiodmul.per | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 9 | 8 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 10 | 2, 4, 5, 7, 9 | fperiodmullem 45308 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| 11 | 6 | recnd 11209 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | fperiodmul.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 13 | 12 | zcnd 12646 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 14 | 3 | recnd 11209 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 15 | 13, 14 | mulcld 11201 | . . . . . . 7 ⊢ (𝜑 → (𝑁 · 𝑇) ∈ ℂ) |
| 16 | 11, 15 | subnegd 11547 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇))) |
| 17 | 13, 14 | mulneg1d 11638 | . . . . . . . 8 ⊢ (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇)) |
| 18 | 17 | eqcomd 2736 | . . . . . . 7 ⊢ (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇)) |
| 19 | 18 | oveq2d 7406 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
| 20 | 16, 19 | eqtr3d 2767 | . . . . 5 ⊢ (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
| 21 | 20 | fveq2d 6865 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
| 23 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
| 24 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
| 25 | znnn0nn 12652 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | |
| 26 | 12, 25 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) |
| 27 | 26 | nnnn0d 12510 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0) |
| 28 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
| 29 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 30 | 29 | zred 12645 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 31 | 30 | renegcld 11612 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ) |
| 32 | 31, 24 | remulcld 11211 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ) |
| 33 | 28, 32 | resubcld 11613 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ) |
| 34 | 8 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 35 | 23, 24, 27, 33, 34 | fperiodmullem 45308 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
| 36 | 28 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) |
| 37 | 30 | recnd 11209 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 38 | 37 | negcld 11527 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ) |
| 39 | 24 | recnd 11209 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ) |
| 40 | 38, 39 | mulcld 11201 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ) |
| 41 | 36, 40 | npcand 11544 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋) |
| 42 | 41 | fveq2d 6865 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| 43 | 22, 35, 42 | 3eqtr2d 2771 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| 44 | 10, 43 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 |
| This theorem is referenced by: fourierdlem89 46200 fourierdlem90 46201 fourierdlem91 46202 fourierdlem94 46205 fourierdlem97 46208 fourierdlem113 46224 |
| Copyright terms: Public domain | W3C validator |